Цитирование: | 1. Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Van De Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim Chang. 2016, 6, 810–813, doi:10.1038/nclimate3111.
2. Erler, A.R.; Frey, S.K.; Khader, O.; d’Orgeville, M.; Park, Y.-J.; Hwang, H.-T.; Lapen, D.R.; Peltier, W.R.; Sudicky, E.A. Simulating Climate Change Impacts on Surface Water Resources Within a Lake-Affected Region Using Regional Climate Projections. Water Resour. Res. 2018, 55, doi:10.1029/2018WR024381.
3. Maberly, S.C.; O’Donnell, R.A.; Woolway, R.I; Cutler, M.E.; Gong, M.; Jones, I.D.; Merchant, C.J.; Miller, C.A.; Politi, E.; Marian Scott, E. Global lake thermal regions shift under climate change. Nat. Commun. 2020, 11, 1232, doi:10.1038/s41467-020-15108-z.
4. Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, C.G. Geochemical evolution of Great Salt Lake, Utah, USA. Aquat. Geochem. 2009, 15, 95–121, doi:10.1007/s10498-008-9047-y.
5. Tweed, S.; Grace, M.; Leblanc, M.; Cartwright, I.; Smithyman, D. The individual response of saline lakes to a severe drought. Sci. Total Environ. 2011, 409, 3919–3933, doi:10.1016/j.scitotenv.2011.06.023.
6. Wahed, A.M.S.M.; Mohamed, E.A.; El-Sayed, M.I.; M’nif, A.; Sillanpää, M. Geochemical modeling of evaporation process in Lake Qarun, Egypt. J. Afr. Earth Sci. 2014, 97, 322–330, doi:10.1016/j.jafrearsci.2014.05.008.
7. Boros, E.; Horváth, Z.; Wolfram, G.; Vörös, L. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann. De Limnol. Int. J. Limnol. 2014, 50, 59–69, doi:10.1051/limn/2013068.
8. Deocampo, D.; Jones, B. Geochemistry of Saline Lakes. In Treatise on Geochemistry. Volume 7: Surface and Groundwater, Weathering, and Soils, 2nd ed.; Drever, J.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 7.13, doi:10.1016/B978-0-08-095975-7.00515-5.
9. Pitzer, KS. Activity Coefficients in Electrolyte Solutions, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991.
10. Lassin, A.; André, L.; Lach, A. Considerations about the Building of a Thermodynamic Database for the Chemical Description of Highly Saline Systems. Procedia Earth Planet. Sci. 2017, 17, 304–307, doi:10.1016/j.proeps.2016.12.064.
11. Wollast, R.; Chou, C. The carbon cycle at the ocean margin in the northern Gulf of Biscay. Deep Sea Res. 2001, 48, 3265–3293.
12. Berg, G.M.; Balode, M.; Purina, I.; Bekere, S.; Bechemin, C.; Maestrini, S.Y. Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquat. Microb. Ecol. 2003, 30, 263–274.
13. Middelburg, J.J. Reviews and syntheses: To the bottom of carbon processing at the seafloor. Biogeosciences 2018, 15, 413–427, doi:10.5194/bg-15-413-2018.
14. Mianping, Z. Classification of Saline Lakes and Types of Mineral Deposit. In An Introduction to Saline Lakes on the Qinghai—Tibet Plateau; Monographiae Biologicae; Springer: Dordrecht, The Netherlands, 1997; Volume 76.
15. Berner, R.A. Principles of Chemical Sedimentology; McGraw-Hill: New York, NY, USA, 1971; 240p.
16. Jorgensen, B.B. Processes at the sediment-water interface. In The Major Biochemical Cycles and Their Interactions; Bolin, B., Cook, R.B., Eds.; John Wiley: New York, NY, USA, 1983; pp. 477–515.
17. Santschi, P.H.; Höhener, P.P.; Benoit, G.; Buchholtz-ten Brink, M. Chemical Processes at the Sediment-Water Interface. Mar. Chem. 1990, 30, 269–315 doi:10.1016/0304-4203(90)90076-O.
18. Canfield, D.; Raiswell, R.; Bottrell, S.H. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 1992, 292, 659–683, doi:10.2475/ajs.292.9.659.
19. Chilingar, G.V.; Larsen, G. Diagenesis in Sediments and Sedimentary Rocks; Elsevier: Amsterdam, The Netherlands, 1983; Volume 2.
20. Davydova, N.; Subetto, D.; Belkina, N.; Simola, H.; Kukkonen, M. Paleolimnology and sediments of Lake Ladoga: Monitoring programmer proposal. Environ. Monit. Lake Ladoga. Joensuu 2000, 1, 68–74.
21. Belkina, N. Changes in the Processes of Redox Diagenesis of Bottom Sediments of Onega and Ladoga lakes under the Influence of Anthropogenic Factors. Ph.D. Thesis, Northern Water Problems Institute Karelian Research Centre Russian Academy of Science, Saint-Petersburg, Russia, 2003; 149p. (In Russian)
22. Muller, B., Maerki, M., Schmid, M., Vologina, E.G., Wehrli, B., Wüest, A., Sturm, M. Internal carbon and nutrient cycling in Lake Baikal: Sedimentation, upwelling, and early diagenesis. Glob. Planet. Chang. 2005, 46, 101–124, doi:10.1016/j.gloplacha.2004.11.008.
23. Gaskova, O.L.; Strakhovenko, V.D.; Ermolaeva, N.I.; Zarubina, E.Y.; Ovdina, E.A. A simple method to model the reduced environment of lake bottom sapropel formation. Chin. J. Ocean. Limnol. 2017, 35, 956– 966, doi:10.1007/s00343-017-5345-9.
24. Leonova, G.A.; Mal’tsev, A.E.; Melenevskii, V.N.; Miroshnichenko, L.V.; Kondrat’eva, L.M.; Bobrov, V.A. Geochemistry of Diagenesis of Organogenic Sediments: An Example of Small Lakes in Southern West Siberia and Western Baikal Area. Geochem. Int. 2018, 56, 344–361 doi:10.1134/S0016702918040043.
25. Strakhovenko, V.D.; Shcherbov, B.L.; Malikova, I.N.; Vosel’, Y. The regularities of distribution of radionuclides and rear-earth elements in bottom sediments of Siberian lakes. Russ. Geol. Geophys. 2010, 51, 1167–1178, doi:10.1016/j.rgg.2010.10.002.
26. Zhdanova, A.N.; Solotchina, E.P.; Krivonogov, S.K.; Solotchin, P.A. Mineral Composition of the Sediments of Lake Malye Chany as an Indicator of Holocene Climate Changes (Southern West Siberia). Russ. Geol. Geophys. 2019, 60, 1163–1174.
27. Borzenko, S.V.; Kolpakova, M.N.; Shvartsev, S.L.; Isupov, V.P. Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai. J. Oceanol. Limnol. 2018, 36, 676–686, doi:10.1007/s00343-018-6293-8.
28. Lebedeva Verba, M.P.; Lopukhina, O.V.; Kalinina, N.V. Specificity of the chemical and mineralogical composition of salts in solonchak playas and lakes of the Kulunda steppe. Eurasian Soil Sci. 2008, 41, 416– 428, doi:10.1134/S106422930804008X.
29. Rudaya, N.; Nazarova, L.; Nourgaliev, D.; Palagushkina, O.; Papin, D.; Frolova, L. Mid-late Holocene environmental history of Kulunda, southern West Siberia: Vegetation, climate and humans. Quat. Sci. Rev. 2012, 48, 32–42, doi:10.1016/j.quascirev.2012.06.002.
30. Zarubina, E.Y.; Durnikin, D.A. Flora of saline lakes of Kulunda steppe (south of Western Siberia). Sib. Ecol. J. 2005, 2, 341–351. (In Russian)
31. Kuznetsova, M.A.; Postnikova, O.V.; Sidorenkov, A.V. Hydrogeology of USSR; Nedra: Moscow, Russia, 1972; Volume 17, p. 344. (In Russian)
32. Slyadnev, A. Climate of Altay Kray; Altai knizhnoye izdatel’stvo: Barnaul, Russia, 1958; 139p. (In Russian)
33. Maximova, N.; Kantamaneni, K.; Morkovkin, G.; Arnaut, D.; Rice, L. The transformation of agro-climatic resources of the altai region under changing climate conditions. Agriculture 2019, 9, 1–13, doi:10.3390/agriculture9040068.
34. Roshydromet. A Report on Climate Features on the Territory of the Russian Federation in 2018. 2019. 79p. Available online: https://meteoinfo.ru/images/media/climate/rus-clim-annual-report.pdf (accessed on 22 September 2020).
35. Kolpakova, M.N.; Gaskova, O.L.; Naymushina, O.S.; Karpov, A.V.; Vladimirov, A.G.; Krivonogov, S.K. Saline lakes of Northern Kazakhstan: Geochemical correlations of elements and controls on their accumulation in water and bottom sediments. Appl. Geochem. 2019, 107, 8–18, doi:10.1016/j.apgeochem.2019.05.013.
36. Rudaya, N.; Krivonogov, S.; Słowiński, M.; Cao, X.; Zhilich, S. Postglacial history of the Steppe Altai: Climate, fire and plant diversity. Quat. Sci. Rev. 2020, accepted.
37. Dauvalter, V.A.; Rognerud, S. Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere 2001, 42, 9–18, doi:10.1016/S0045-6535(00)00094-1.
38. Tessier, A.; Cambell, P.G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851.
39. Bogush, A.A.; Lazareva, E.V. Behavior of heavy metals in sulfide mine tailings and bottom sediment (Salair, Kemerovo region, Russia). Environ. Earth Sci. 2011, 64, 1293–1302, doi:10.1007/s12665-011-0947-6.
40. Duarte, C.M.; Prairie, Y.T.; Montes, C.; Cole, J.J.; Striegl, R.; Melack, J.; Downing, J.A. CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. J. Geophys. Res. Biogeosci. 2008, 113, doi:10.1029/2007JG000637.
41. Goldschmidt, V.M. The principles of distribution of chemical elements in minerals and rocks. J. Chem. Soc. 1937, 74, 655–673.
42. Hardie, L.A.; Eugster, H.P. The Evolution of Closed-Basin Brines. Miner. Soc. Am. Spec. Publ. 1970, 3, 273– 290.
43. Babel, M.; Schreiber, B.C. Geochemistry of Evaporites and Evolution of Seawater. In Treatise on Geochemistry, 2nd ed.; Elsevier: San Diego, CA, USA, 2014; Volume 9.
44. Kolpakova, M.N.; Gaskova, O.L. Major ions behaviour during evaporation of different saline type water of Western Mongolian lakes (geochemical modelling). Hydrol. Res. 2018, 49, 163–176, doi:10.2166/nh.2017.148.
45. Parkhurst, D.L.; Appelo, C.A. Description of Input and Examples for PHREEQC Version 3—A Computer Program. for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey Techniques and Methods: Denver, CO, USA, 2013; 497p.
46. Gas’kova, O.L.; Strakhovenko, V.D.; Ovdina, E.A. Composition of brines and mineral zoning of the bottom sediments of soda lakes in the Kulunda steppe (West Siberia). Russ. Geol. Geophys. 2017, 58, 1207–1218.
47. Rudaya, N.; Zhilich, S. Changes in Annual Precipitation in the Younger Dryas and Holocene in Southwestern Siberia. Probl. Archaeol. Ethnogr. Anthropol. Sib. Neighboring Territ. 2019, 25, 211–217, doi:10.17746/2658-6193.2019.25.211-217.
48. Chizhikova, N.P.; Khitrov, N.B. Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia. Eurasian Soil Sci. 2016, 49, 1419–1431, doi:10.1134/S106422931612005X.
49. Raiswell, R. Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci. 1982, 1, 1244–1263, doi:10.2475/ajs.282.8.1244.
50. Picard, A.; Gartman, A.; Clarke, D.R.; Girguis, P.R. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim. Cosmochim. Acta 2018, 220, 367–384, doi:10.1016/j.gca.2017.10.006.
51. Popa, R.; Kinkle, B.K.; Badescu, A. Pyrite Framboids as Biomarkers for Iron-Sulfur Systems. Geomicrobiol. J. 2004, 21, 193–206, doi:10.1080/01490450490275497.
52. Hass, A.; Fine, P. Sequential Selective Extraction Procedures for the Study of Heavy Metals in Soils, Sediments, and Waste Materials—a Critical Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 365–399, doi:10.1080/10643380802377992.
53. Lazareva, E. (IGM SB RAS, Novosibirsk, Russia). Personal communication, 2020.
54. Rozanov, A.G. Redox system of the bottom sediments of the western Kara Sea. Geochem. Int. 2015, 53, 987– 1001, doi:10.1134/S001670291511004X.
55. Manning-Berg, A.R.; Kah, L.C. Proterozoic microbial mats and their constraints on environments of silicification. Geobiology 2017, 15, 469–483, doi:10.1111/gbi.12238.
56. Wooyong, U.; Serne, R.J.; Brown, C.F.; Rod, K.A. Uranium(VI) sorption on iron oxides in Hanford Site sediment: Application of a surface complexation model. Appl. Geochem. 2008, 23, 2649–2657, doi:10.1016/j.apgeochem.2008.05.013.
57. Fontes, J.C.; Matray, J.M. Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chem. Geol. 1993, 109, 149–175.
58. Issar, A. Climate Changes during the Holocene and Their Impact on Hydrological Systems (International Hydrology Series); Cambridge University Press: Cambridge, UK, 2003; doi:10.1017/CBO9780511535703.
59. Hardie, L.A. Anhydrite and gypsum. In Sedimentology. Encyclopedia of Earth Science; Springer: Berlin/Heidelberg, Germany, 1978.
60. Yechieli, Y.; Wood, W.W. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes. Earth Sci. Rev. 2002, 58, 343–365, doi:10.1016/S0012-8252(02)00067-3.
61. De Lange, G.J.; Krijgsman, W. Primary Messinian Salinity Crisis shallow gypsum vs. deep dolomite formation: A unifying biogeochemical mechanism. Mar. Geol. 2010, 275, 273–277.
62. Komlev, A.E. Anionic composition of groundwaters of Altai Krai. Izv. Altai Univ. 2010, 3–2, 99–103. (In Russian)
63. Paramonov, E.; Rybkina, I.; Gubarev, M. Agrarian and Forest Landscapes in Steppe: Prevention of Soil Deflation during Climate Warming. Eur. Geogr. Stud. 2019, 6, 39–49, doi:10.13187/egs.2019.1.39.
|