Инд. авторы: Kurus A.F., Lobanov S.S., Grazhdannikov S.A., Isaenko L.I., Shlegel V.
Заглавие: Ligas2 crystal growth under low temperature gradient conditions by the modified bridgman method
Библ. ссылка: Kurus A.F., Lobanov S.S., Grazhdannikov S.A., Isaenko L.I., Shlegel V. Ligas2 crystal growth under low temperature gradient conditions by the modified bridgman method // Materials Science and Engineering: B. - 2020. - Vol.262. - Art.114715. - ISSN 0921-5107. - EISSN 1873-4944.
Внешние системы: DOI: 10.1016/j.mseb.2020.114715; РИНЦ: 45400820;
Реферат: eng: LiGaS2 (LGS) is a promising nonlinear optical material for the generation of coherent radiation in the mid IR range. However, the production of large crystals of optical quality is complicated by the strong incongruent evaporation of volatile components at the temperatures above melting point. Such evaporation leads to deviations from the crystal stoichiometry during the growth process. In this paper the value of the LGS melt superheating in classical Bridgman–Stockbarger method was determined using the mathematical modeling. On the other hand, we designed a modified furnace and tested it: This allowed us to decrease the melt superheating down to 5 K.
Ключевые слова: B2. Nonlinear optic materials; B1. Lithium compounds; A2. Bridgman technique; A1. computer simulation;
Издано: 2020
Физ. характеристика: 114715
Цитирование: 1. Isaenko, L., Yelisseyev, A., Lobanov, S., Titov, A., Petrov, V., Zondy, J.-J., Krinitsin, P., Merkulov, A., Vedenyapin, V., Smirnova, J., Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 38 (2003), 379–387, 10.1002/crat.200310047. 2. Tyazhev, A., Vedenyapin, V., Marchev, G., Isaenko, L., Kolker, D., Lobanov, S., Petrov, V., Yelisseyev, A., Starikova, M., Zondy, J.J., Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2. Opt. Mater. (Amst) 35 (2013), 1612–1615, 10.1016/j.optmat.2013.03.016. 3. Isaenko, L., Vasilyeva, I., Merkulov, A., Yelisseyev, A., Lobanov, S., Growth of new nonlinear crystals LiMX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics. J. Cryst. Growth, 2005, 217–223, 10.1016/j.jcrysgro.2004.10.089. 4. Isaenko, L.I., Vasilyeva, I.G., Nonlinear LiBIIICYI2 crystals for mid-IR and far-IR: Novel aspects in crystal growth. J. Cryst. Growth 310 (2008), 1954–1960, 10.1016/j.jcrysgro.2007.11.201. 5. STR, CGSim, (n.d.). http://www.str-soft.com/products/CGSim/package. 6. Demina, S.E., Bystrova, E.N., Postolov, V.S., Eskov, E.V., Nikolenko, M.V., Marshanin, D.A., Yuferev, V.S., Kalaev, V.V., Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method. J. Cryst. Growth 310 (2008), 1443–1447, 10.1016/j.jcrysgro.2007.11.083. 7. Artemyev, V.V., Smirnov, A.D., Kalaev, V.V., Mamedov, V.M., Sidko, A.P., Podkopaev, O.I., Kravtsova, E.D., Shimansky, A.F., Modeling of dislocation dynamics in germanium Czochralski growth. J. Cryst. Growth 468 (2017), 443–447, 10.1016/j.jcrysgro.2017.01.032. 8. Mazaev, K., Kalaev, V., Galenin, E., Tkachenko, S., Sidletskiy, O., Heat transfer and convection in Czochralski growth of large BGO Crystals. J. Cryst. Growth 311 (2009), 3933–3937, 10.1016/j.jcrysgro.2009.06.009. 9. Miyagawa, C., Kobayashi, T., Taishi, T., Hoshikawa, K., Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation. J. Cryst. Growth 402 (2014), 83–89, 10.1016/j.jcrysgro.2014.04.030. 10. Isaenko, L., Yelisseyev, A., Lobanov, S., Krinitsin, P., Petrov, V., Zondy, J.J., Ternary chalcogenides LiBC2 (B = In, Ga; C = S, Se, Te) for mid-IR nonlinear optics. J. Non Cryst. Solids 352 (2006), 2439–2443, 10.1016/j.jnoncrysol.2006.03.045. 11. Grazhdannikov, S.A., Krinitsyn, P.G., Kurus, A.F., Isaenko, L.I., Yelisseyev, A.P., Molokeev, M.S., LiGaTe2 (LGT) nonlinear crystal: synthesis and crystal growth processes exploration. Mater. Sci. Semicond. Process. 72 (2017), 52–59, 10.1016/j.mssp.2017.09.017. 12. Isaenko, L.I., Yelisseyev, A.P., Recent studies of nonlinear chalcogenide crystals for the mid-IR. Semicond. Sci. Technol., 31, 2016, 10.1088/0268-1242/31/12/123001. 13. Viechnicki, D., Schmid, F., Crystal growth using the heat exchanger method (HEM). J. Cryst. Growth, 1974, 10.1016/0022-0248(74)90221-8. 14. Xiong, H.B., Ma, Y., Zheng, L.L., A modified HEM system for optical crystal growth with high melting temperature. J. Cryst. Growth 299 (2007), 404–412, 10.1016/j.jcrysgro.2006.12.014. 15. Miyagawa, C., Kobayashi, T., Taishi, T., Hoshikawa, K., Demonstration of crack-free c-axis sapphire crystal growth using the vertical Bridgman method. J. Cryst. Growth 372 (2013), 95–99, 10.1016/j.jcrysgro.2013.03.006. 16. Pupazan, V., Negrila, R., Bunoiu, O., Nicoara, I., Vizman, D., Effects of crucible coating on the quality of multicrystalline silicon grown by a Bridgman technique. J. Cryst. Growth 401 (2014), 720–726, 10.1016/j.jcrysgro.2014.02.038.