Инд. авторы: Kalugina A.D., Zedgenizov D.A.
Заглавие: Micro‐raman spectroscopy assessment of chemical compounds of mantle clinopyroxenes
Библ. ссылка: Kalugina A.D., Zedgenizov D.A. Micro‐raman spectroscopy assessment of chemical compounds of mantle clinopyroxenes // Minerals. - 2020. - Vol.10. - Iss. 12. - P.1-11. - EISSN 2075-163X.
Внешние системы: DOI: 10.3390/min10121084; РИНЦ: 45107619; WoS: 000602323500001;
Реферат: eng: The composition of clinopyroxenes is indicative for chemical and physical properties of mantle substrates. In this study, we present the results of Raman spectroscopy examination of clinopyroxene inclusions in natural diamonds (n = 51) and clinopyroxenes from mantle xenoliths of peridotites and eclogites from kimberlites (n = 28). The chemical composition of studied clinopyroxenes shows wide variations indicating their origin in different mantle lithologies. All clinopyroxenes have intense Raman modes corresponding to metal‐oxygen translation (~300–500 cm−1), stretching vibrations of bridging O‐Si‐Obr (ν11~670 cm−1), and nonbridging atoms O‐Si‐Onbr (ν16~1000 cm−1). The peak position of the stretching vibration mode (ν11) for the studied clinopyroxenes varies in a wide range (23 cm−1) and generally correlates with their chemical composition and reflects the diopside‐jadeite heterovalent isomorphism. These correlations may be used for rough estimation of these compounds using the non‐destructive Raman spectroscopy technique.
Ключевые слова: diamond; eclogite; raman spectroscopy; peridotite; mantle; clinopyroxene;
Издано: 2020
Физ. характеристика: с.1-11
Цитирование: 1. Sobolev, N.V. Deep Inclusions in Kimberlites and the Problem of the Upper Mantle Composition; Sobolev, V.S., Ed.; Nauka: Moscow, Russia, 1974. 2. Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32, doi:10.1016/j.oregeorev.2007.05.002. 3. Taylor, L.A.; Neal, C.R. Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: Mineralogy, petrography, and whole rock chemistry. J. Geol. 1989, 97, 551–567, doi:10.1086/629334. 4. Liu, L.G.; Mernagh, T.P.; Jaques, A.L. A mineralogical Raman spectroscopy study on eclogitic garnet inclusions in diamonds from Argyle. Contrib. Mineral. Petrol. 1990, 105, 156–161, doi:10.1007/BF00678982. 5. Izraeli, E.S.; Harris, J.W.; Navon, O. Raman barometry of diamond formation. Earth Planet. Sci. Lett. 1990, 173, 351–360, doi:10.1016/S0012‐821X(99)00235‐6. 6. McMillan, P. Theory and practice–lattice vibrations and spectroscopy of mantle phases. In Treatise on Geophysics; Price, D.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 153–196. 7. Kagi, H.; Odake, S.; Fukura, S.; Zedgenizov, D.A. Raman spectroscopic estimation of depth of diamond origin: Technical developments and the application. Russ. Geol. Geophys. 2009, 50, 1183–1187, doi:10.1016/j.rgg.2009.11.016. 8. Nestola, F.; Alvaro, M.; Casati, M.N.; Wilhelm, H.; Kleppe, A.K.; Jephcoat, A.P.; Domeneghetti, M.C.; Harris, J.W. Source assemblage types for cratonic diamonds from X‐ray synchrotron diffraction. Lithos 2016, 265, 334–338, doi:10.1016/j.lithos.2016.07.037. 9. Kalugina, A.D.; Zedgenizov, D.A. Raman discrimination of garnet inclusions in Siberian diamonds. J. Raman Spectrosc. 2020, 51, 1438–1444, doi:10.1002/jrs.5713. 10. Chopelas, A.; Serghiou, G. Spectroscopic evidence for pressure‐induced phase transitions in diopside. Phys. Chem. Miner. 2002, 29, 403–408, doi:10.1007/s00269‐002‐0244‐8. 11. Lin, C.C. Pressure‐induced polymorphism in enstatite (MgSiO3) at room temperature: Clinoenstatite and orthoenstatite. J. Phys. Chem. Solids 2004, 65, 913–921, doi:10.1016/j.jpcs.2003.09.028. 12. Kolesnichenko, M.V.; Zedgenizov, D.A.; Litasov, K.D.; Safonova, I.Y.; Ragozin, A.L. Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe. Gondwana Res. 2017, 47, 249–266, doi:10.1016/j.gr.2016.09.011. 13. Kolesnichenko, M.V.; Zedgenizov, D.A.; Ragozin, A.L.; Litasov, K.D.; Shatsky, V.S. The role of eclogites in the redistribution of water in the subcontinental mantle of the Siberian craton: Results of determination of the water content in minerals from the Udachnaya pipe eclogites. Russ. Geol. Geophys. 2018, 59, 763–779, doi:10.1016/j.rgg.2018.07.004. 14. Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161, doi:10.1016/j.rgg.2015.07.006. 15. Shatsky, V.S.; Zedgenizov, D.A.; Ragozin, A.L.; Kalinina, V.V. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res. 2015, 28, 106–120, doi:10.1016/j.gr.2014.03.018. 16. Zedgenizov, D.A.; Ragozin, A.L.; Kalinina, V.V.; Malkovets, V.G.; Pomazansky, B.S. Mineral inclusions in diamonds from Nyurbinskaya kimberlite pipe (Yakutia). In Geology and Mineral Resources of the North‐East of Russia, Proceedings of Russian Scientific‐Practical Conference “Geology and Mineral Resources of the North‐East of Russia”, Yakutsk, Russia, 31 March–2 April 2015; Biller, A.Y., Eds.; M.K. Ammosov North‐Eastern Federal University: Yakutsk, Russia, 2015; pp. 173–176. 17. Gubanov, N.; Zedgenizov, D.; Sharygin, I.; Ragozin, A. Origin and evolution of high‐Mg carbonatitic and low‐Mg carbonatitic to silicic high‐density fluids in coated diamonds from Udachnaya kimberlite pipe. Minerals 2019, 9, 734, doi:10.3390/min9120734. 18. Smith, D.C. The RAMANITA1© method for non‐destructive and in situ semi‐quantitative chemical analysis of mineral solid‐solutions by multidimensional calibration of Raman wavenumber shifts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 61, 2299–2314, doi:10.1016/j.saa.2005.02.029. 19. Wang, A.; Jolliff, B.L.; Haskin, L.A.; Kuebler, K.E.; Viskupic, K.M. Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am. Mineral. 2001, 86, 760–806, doi:10.2138/am‐2001‐0703. 20. Mernagh, T.P.; Hoatson, D.M. Raman Spectroscopic Study of Pyroxene Structures from the Layered Intrusion, Munni Munni Western Australia. J. Raman Spectrosc. 1997, 28, 647–658, doi:10.1002/(SICI)1097‐ 4555(199709)28:9 < 647::AID‐JRS155 > 3.0.CO;2‐H. 21. Chopelas, A. Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high‐pressure spectroscopic data. Am. Mineral. 1999, 84, 233–244, doi:10.2138/am‐1999‐0304. 22. Huang, E.; Chen, C.H.; Huang, T.; Lin, E.H.; Xu, J.A. Raman spectroscopic characteristics of Mg‐Fe‐Ca pyroxenes. Am. Mineral. 2000, 85, 473–479, doi:10.2138/am‐2000‐0408. 23. Prencipe, M.; Maschio, L.; Kirtman, B.; Salustro, S.; Erba, A.; Dovesi, R. Raman spectrum of NaAlSi2O6 jadeite. A quantum mechanical simulation. J. Raman Spectrosc. 2014, 45, 703–709, doi:10.1002/jrs.4519. 24. Deer, W.A.; Howie, R.A.; Zussman, J. Pyroxene Group. In An Introduction to the Rock‐Forming Minerals, 2nd ed.; Longman Scientific & Technical: London, UK, 1992. 25. Safonov, O.G.; Litvin, Y.A.; Perchuk, L.L. Synthesis of omphacites and isomorphic features of clinopyroxenes in the system CaMgSi2O6–NaAlSi2O6–KAlSi2O6. Petrology. 2004, 12, 84–97. 26. Papike, J.J.; Karner, J.M.; Shearer, C.K. Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am. Mineral. 2005, 90, 277–290, doi:10.2138/am.2005.1779. 27. Compomenosi, N.; Mazzucchelli, M.L.; Mihailova, B.; Scambelluri, M.; Angel, R.J.; Nestola, F.; Reali, A.; Alvaro, M. How geometry and anisotropy affect residual strain in host‐inclusion systems: Coupling experimental and numerical approaches. Am. Mineral. 2018, 103, 2032–2035, doi:10.2138/am‐2018‐ 6700CCBY.