Цитирование: | 1. Sobolev, N.V. Deep Inclusions in Kimberlites and the Problem of the Upper Mantle Composition; Sobolev, V.S., Ed.; Nauka: Moscow, Russia, 1974.
2. Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32, doi:10.1016/j.oregeorev.2007.05.002.
3. Taylor, L.A.; Neal, C.R. Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: Mineralogy, petrography, and whole rock chemistry. J. Geol. 1989, 97, 551–567, doi:10.1086/629334.
4. Liu, L.G.; Mernagh, T.P.; Jaques, A.L. A mineralogical Raman spectroscopy study on eclogitic garnet inclusions in diamonds from Argyle. Contrib. Mineral. Petrol. 1990, 105, 156–161, doi:10.1007/BF00678982.
5. Izraeli, E.S.; Harris, J.W.; Navon, O. Raman barometry of diamond formation. Earth Planet. Sci. Lett. 1990, 173, 351–360, doi:10.1016/S0012‐821X(99)00235‐6.
6. McMillan, P. Theory and practice–lattice vibrations and spectroscopy of mantle phases. In Treatise on Geophysics; Price, D.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 153–196.
7. Kagi, H.; Odake, S.; Fukura, S.; Zedgenizov, D.A. Raman spectroscopic estimation of depth of diamond origin: Technical developments and the application. Russ. Geol. Geophys. 2009, 50, 1183–1187, doi:10.1016/j.rgg.2009.11.016.
8. Nestola, F.; Alvaro, M.; Casati, M.N.; Wilhelm, H.; Kleppe, A.K.; Jephcoat, A.P.; Domeneghetti, M.C.; Harris, J.W. Source assemblage types for cratonic diamonds from X‐ray synchrotron diffraction. Lithos 2016, 265, 334–338, doi:10.1016/j.lithos.2016.07.037.
9. Kalugina, A.D.; Zedgenizov, D.A. Raman discrimination of garnet inclusions in Siberian diamonds. J. Raman Spectrosc. 2020, 51, 1438–1444, doi:10.1002/jrs.5713.
10. Chopelas, A.; Serghiou, G. Spectroscopic evidence for pressure‐induced phase transitions in diopside. Phys. Chem. Miner. 2002, 29, 403–408, doi:10.1007/s00269‐002‐0244‐8.
11. Lin, C.C. Pressure‐induced polymorphism in enstatite (MgSiO3) at room temperature: Clinoenstatite and orthoenstatite. J. Phys. Chem. Solids 2004, 65, 913–921, doi:10.1016/j.jpcs.2003.09.028.
12. Kolesnichenko, M.V.; Zedgenizov, D.A.; Litasov, K.D.; Safonova, I.Y.; Ragozin, A.L. Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe. Gondwana Res. 2017, 47, 249–266, doi:10.1016/j.gr.2016.09.011.
13. Kolesnichenko, M.V.; Zedgenizov, D.A.; Ragozin, A.L.; Litasov, K.D.; Shatsky, V.S. The role of eclogites in the redistribution of water in the subcontinental mantle of the Siberian craton: Results of determination of the water content in minerals from the Udachnaya pipe eclogites. Russ. Geol. Geophys. 2018, 59, 763–779, doi:10.1016/j.rgg.2018.07.004.
14. Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161, doi:10.1016/j.rgg.2015.07.006.
15. Shatsky, V.S.; Zedgenizov, D.A.; Ragozin, A.L.; Kalinina, V.V. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res. 2015, 28, 106–120, doi:10.1016/j.gr.2014.03.018.
16. Zedgenizov, D.A.; Ragozin, A.L.; Kalinina, V.V.; Malkovets, V.G.; Pomazansky, B.S. Mineral inclusions in diamonds from Nyurbinskaya kimberlite pipe (Yakutia). In Geology and Mineral Resources of the North‐East of Russia, Proceedings of Russian Scientific‐Practical Conference “Geology and Mineral Resources of the North‐East of Russia”, Yakutsk, Russia, 31 March–2 April 2015; Biller, A.Y., Eds.; M.K. Ammosov North‐Eastern Federal University: Yakutsk, Russia, 2015; pp. 173–176.
17. Gubanov, N.; Zedgenizov, D.; Sharygin, I.; Ragozin, A. Origin and evolution of high‐Mg carbonatitic and low‐Mg carbonatitic to silicic high‐density fluids in coated diamonds from Udachnaya kimberlite pipe. Minerals 2019, 9, 734, doi:10.3390/min9120734.
18. Smith, D.C. The RAMANITA1© method for non‐destructive and in situ semi‐quantitative chemical analysis of mineral solid‐solutions by multidimensional calibration of Raman wavenumber shifts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 61, 2299–2314, doi:10.1016/j.saa.2005.02.029.
19. Wang, A.; Jolliff, B.L.; Haskin, L.A.; Kuebler, K.E.; Viskupic, K.M. Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am. Mineral. 2001, 86, 760–806, doi:10.2138/am‐2001‐0703.
20. Mernagh, T.P.; Hoatson, D.M. Raman Spectroscopic Study of Pyroxene Structures from the Layered Intrusion, Munni Munni Western Australia. J. Raman Spectrosc. 1997, 28, 647–658, doi:10.1002/(SICI)1097‐ 4555(199709)28:9 < 647::AID‐JRS155 > 3.0.CO;2‐H.
21. Chopelas, A. Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high‐pressure spectroscopic data. Am. Mineral. 1999, 84, 233–244, doi:10.2138/am‐1999‐0304.
22. Huang, E.; Chen, C.H.; Huang, T.; Lin, E.H.; Xu, J.A. Raman spectroscopic characteristics of Mg‐Fe‐Ca pyroxenes. Am. Mineral. 2000, 85, 473–479, doi:10.2138/am‐2000‐0408.
23. Prencipe, M.; Maschio, L.; Kirtman, B.; Salustro, S.; Erba, A.; Dovesi, R. Raman spectrum of NaAlSi2O6 jadeite. A quantum mechanical simulation. J. Raman Spectrosc. 2014, 45, 703–709, doi:10.1002/jrs.4519.
24. Deer, W.A.; Howie, R.A.; Zussman, J. Pyroxene Group. In An Introduction to the Rock‐Forming Minerals, 2nd ed.; Longman Scientific & Technical: London, UK, 1992.
25. Safonov, O.G.; Litvin, Y.A.; Perchuk, L.L. Synthesis of omphacites and isomorphic features of clinopyroxenes in the system CaMgSi2O6–NaAlSi2O6–KAlSi2O6. Petrology. 2004, 12, 84–97.
26. Papike, J.J.; Karner, J.M.; Shearer, C.K. Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am. Mineral. 2005, 90, 277–290, doi:10.2138/am.2005.1779.
27. Compomenosi, N.; Mazzucchelli, M.L.; Mihailova, B.; Scambelluri, M.; Angel, R.J.; Nestola, F.; Reali, A.; Alvaro, M. How geometry and anisotropy affect residual strain in host‐inclusion systems: Coupling experimental and numerical approaches. Am. Mineral. 2018, 103, 2032–2035, doi:10.2138/am‐2018‐ 6700CCBY.
|