Цитирование: | 1. Skála, R.; Císařová, I. Crystal structure of meteoritic schreibersites: determination of absolute structure. Phys. Chem. Miner. 2005, 31, 721-732, 10.1007/s00269-004-0435-6
2. Skála, R.; Drábek, M. Nickelphosphide from the Vicenice octahedrite: Rietveld crystal structure refinement of a synthetic analogue. Mineral. Mag. 2003, 67, 783-792, 10.1180/0026461036740134
3. Buseck, P. R. Phosphide from metorites: barringerite, a new iron-nickel mineral. Science 1969, 165, 169-171, 10.1126/science.165.3889.169
4. Britvin, S. N.; Rudashevsky, N. S.; Krivovichev, S. V.; Burns, P. C.; Polekhovsky, Y. S. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. Am. Mineral. 2002, 87, 1245-1249, 10.2138/am-2002-8-924
5. Pratesi, G.; Bindi, L.; Moggi-Cecchi, V. Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. Am. Mineral. 2006, 91, 451-454, 10.2138/am.2006.2095
6. Reed, S. J. B. Perryite in the Kota-Kota and South Oman enstatite chondrites. Mineral. Mag. J. Mineral. Soc. 1968, 36, 850-854, 10.1180/minmag.1968.036.282.13
7. Britvin, S. N.; Shilovskikh, V. V.; Pagano, R.; Vlasenko, N. S.; Zaitsev, A. N.; Krzhizhanovskaya, M. G.; Lozhkin, M. S.; Zolotarev, A. A.; Gurzhiy, V. V. Allabogdanite, the high-pressure polymorph of (Fe,Ni)2P, a stishovite-grade indicator of impact processes in the Fe-Ni-P system. Sci. Rep. 2019, 9, 1047 10.1038/s41598-018-37795-x
8. Britvin, S. N.; Murashko, M. N.; Vapnik, Y.; Polekhovsky, Y. S.; Krivovichev, S. V.; Vereshchagin, O. S.; Vlasenko, N. S.; Shilovskikh, V. V.; Zaitsev, A. N. Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Miner. 2019, 46, 361-369, 10.1007/s00269-018-1008-4
9. Britvin, S. N.; Vapnik, Y.; Polekhovsky, Y. S.; Krivovichev, S. V.; Krzhizhanovskaya, M. G.; Gorelova, L. A.; Vereshchagin, O. S.; Shilovskikh, V. V.; Zaitsev, A. N. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineral. Petrol. 2019, 113, 237-248, 10.1007/s00710-018-0647-y
10. Britvin, S. N.; Murashko, M. N.; Vapnik, Y.; Polekhovsky, Y. S.; Krivovichev, S. V.; Vereshchagin, O. S.; Shilovskikh, V. V.; Vlasenko, N. S.; Krzhizhanovskaya, M. G. Halamishite, Ni5P4, a new terrestrial phosphide in the Ni-P system. Phys. Chem. Miner. 2020, 47, 3 10.1007/s00269-019-01073-7
11. Litasov, K. D.; Shatskiy, A. F. Composition of the Earth's core: A review. Russ. Geol. Geophys. 2016, 57, 22-46, 10.1016/j.rgg.2016.01.003
12. Litasov, K. D.; Teplyakova, S. N.; Shatskiy, A. F.; Kuper, K. E. Fe-Ni-P-S melt pockets in Elga IIE iron meteorite: evidence for the origin at high-pressures up to 20 GPa. Minerals 2019, 9, 616 10.3390/min9100616
13. Wu, X.; Mookherjee, M.; Gu, T.; Qin, S. Elasticity and anisotropy of iron-nickel phosphides at high pressures. Geophys. Res. Lett. 2011, 38, L20301 10.1029/2011GL049158
14. Scott, H. P.; Huggins, S.; Frank, M. R.; Maglio, S. J.; Martin, C. D.; Meng, Y.; Santillán, J.; Williams, Q. Equation of state and high-pressure stability of Fe3P-schreibersite: Implications for phosphorus storage in planetary cores. Geophys. Res. Lett. 2007, 34, L06302 10.1029/2006GL029160
15. Dera, P.; Lavina, B.; Borkowski, L. A.; Prakapenka, V. B.; Sutton, S. R.; Rivers, M. L.; Downs, R. T.; Boctor, N. Z.; Prewitt, C. T. High-pressure polymorphism of Fe2P and its implications for meteorites and Earth's core. Geophys. Res. Lett. 2008, 35, L10301 10.1029/2008GL033867
16. Wu, X.; Qin, S. First-principles calculations of the structural stability of Fe2P. J. Phys.: Conf. Ser. 2010, 215, 012110 10.1088/1742-6596/215/1/012110
17. Gu, T.; Wu, X.; Qin, S.; Dubrovinsky, L. In situ high-pressure study of FeP: Implications for planetary cores. Phys. Earth Planet. Inter. 2011, 184, 154-159, 10.1016/j.pepi.2010.11.004
18. Sagatov, N. E.; Gavryushkin, P. N.; Banayev, M. V.; Inerbaev, T. M.; Litasov, K. D. Phase relations in the Fe-P system at high pressures and temperatures from ab initio computations. High Pressure Res. 2020, 40, 235-244, 10.1080/08957959.2020.1740699
19. Litasov, K. D.; Bekker, T. B.; Sagatov, N. E.; Gavryushkin, P. N.; Krinitsyn, P. G.; Kuper, K. E. (Fe,Ni)2P allabogdanite can be an ambient pressure phase in iron meteorites. Sci. Rep. 2020, 10, 8956 10.1038/s41598-020-66039-0
20. Zhao, Z.; Liu, L.; Zhang, S.; Yu, T.; Li, F.; Yang, G. Phase diagram, stability and electronic properties of an Fe-P system under high pressure: a first principles study. RSC Adv. 2017, 7, 15986-15991, 10.1039/C7RA01567D
21. Gu, T.; Fei, Y.; Wu, X.; Qin, S. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores. Earth Planet. Sci. Lett. 2014, 390, 296-303, 10.1016/j.epsl.2014.01.019
22. Gu, T.; Fei, Y.; Wu, X.; Qin, S. Phase stabilities and spin transitions of Fe3(S1-xPx) at high pressure and its implications in meteorites. Am. Mineral. 2016, 101, 205-210, 10.2138/am-2016-5466
23. Birch, F. Elasticity and constitution of the Earth's interior. J. Geophys. Res. 1952, 57, 227-286, 10.1029/JZ057i002p00227
24. Allègre, C. J.; Poirier, J.-P.; Humler, E.; Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 1995, 134, 515-526, 10.1016/0012-821X(95)00123-T
25. McDonough, W.; Sun, S.-s. The composition of the Earth. Chem. Geol. 1995, 120, 223-253, 10.1016/0009-2541(94)00140-4
26. Nisar, J.; Ahuja, R. Structure behavior and equation of state (EOS) of Ni2P and (Fe1-xNix)2P (allabogdanite) from first-principles calculations. Earth Planet. Sci. Lett. 2010, 295, 578-582, 10.1016/j.epsl.2010.04.047
27. Ilnitskaya, O.; Akselrud, L.; Mikhalenko, S.; Kuzma, Y. Crystal-Structure of Alpha-Ni8P3. Kristallografiya 1987, 32, 50-54
28. Rundqvist, S.; Larsson, E. The crystal structure of Ni12P5. Acta Chem. Scand. 1959, 13, 50-54, 10.3891/acta.chem.scand.13-0551
29. Rundqvist, S. Phosphides of the B31(MnP) structure type. Acta Chem. Scand. 1962, 16, 287-292, 10.3891/acta.chem.scand.16-0287
30. Elfström, M. Physical properties of lower nickel phosphides. Acta Chem. Scand. 1965, 19, 1694-1704
31. Larsson, E. An X-ray investigation of Ni-P system and crystal structures of NiP and NiP2. Ark. Kemi 1965, 23, 335-338
32. Donohue, P. C.; Bither, T. A.; Young, H. S. High-pressure s ynthesis of pyrite-type nickel diphosphide and nickel diarsenide. Inorg. Chem. 1968, 7, 998-1001, 10.1021/ic50063a031
33. Rundqvist, S. T. Structure and bonding in skutterudite-type phosphides. Ark. Kemi 1968, 30, 103-106
34. Dera, P.; Lavina, B.; Borkowski, L. A.; Prakapenka, V. B.; Sutton, S. R.; Rivers, M. L.; Downs, R. T.; Boctor, N. Z.; Prewitt, C. T. Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores. J. Geophys. Res.: Solid Earth 2009, 114, B03201 10.1029/2008JB005944
35. Dera, P.; Lazarz, J. D.; Lavina, B. Pressure-induced development of bonding in NiAs type compounds and polymorphism of NiP. J. Solid State Chem. 2011, 184, 1997-2003, 10.1016/j.jssc.2011.05.050
36. Dera, P.; Nisar, J.; Ahuja, R.; Tkachev, S.; Prakapenka, V. B. New type of possible high-pressure polymorphism in NiAs minerals in planetary cores. Phys. Chem. Miner. 2013, 40, 183-193, 10.1007/s00269-012-0560-6
37. Litasov, K. D.; Shatskiy, A. F.; Minin, D. A.; Kuper, K. E.; Ohfuji, H. The Ni-Ni2P phase diagram at 6 GPa with implication to meteorites and super-reduced terrestrial rocks. High Pressure Res. 2019, 39, 561-578, 10.1080/08957959.2019.1672677
38. Chen, J.-S.; Yu, C.; Lu, H.; Chen, J.-M. Theoretical study on the phase stability, elasticity, hardness and electronic structures of Ni-P compounds. Phase Transitions 2016, 89, 1078-1089, 10.1080/01411594.2016.1146952
39. Zhao, D.; Zhou, L.; Du, Y.; Wang, A.; Peng, Y.; Kong, Y.; Sha, C.; Ouyang, Y.; Zhang, W. Structure, elastic and thermodynamic properties of the Ni-P system from first-principles calculations. CALPHAD 2011, 35, 284-291, 10.1016/j.calphad.2011.03.002
40. Mizutani, U. Electronic Structure of Metallic Glasses. In Progress in Materials Science; Elsevier Science & Technology Books, 1984.
41. Thube, M. G.; Kulkarni, S. K.; Huerta, D.; Nigavekar, A. S. X-ray-photoelectron-spectroscopy study of the electronic structure of Ni-P metallic glasses. Phys. Rev. B 1986, 34, 6874-6879, 10.1103/PhysRevB.34.6874
42. Jaswal, S. S. Electronic structure and properties of transition-metal-metalloid glasses: Ni1-xPx. Phys. Rev. B 1986, 34, 8937-8940, 10.1103/PhysRevB.34.8937
43. Kojnok, J.; Szasz, A.; Krasser, W.; Mark, G.; Stepanjuk, V. S.; Katsnelson, A. A. Local density of states in amorphous Ni-P alloys. J. Phys.: Condens. Matter 1992, 4, 2487-2503, 10.1088/0953-8984/4/10/013
44. Martyak, N. M. Characterization of Thin Electroless Nickel Coatings. Chem. Mater. 1994, 6, 1667-1674, 10.1021/cm00046a019
45. Hines, W. A.; Glover, K.; Clark, W. G.; Kabacoff, L. T.; Modzelewski, C. U.; Hasegawa, R.; Duwez, P. Electronic structure of the Ni-Pd-P and Ni-Pt-P metallic glasses: A pulsed NMR study. Phys. Rev. B 1980, 21, 3771-3780, 10.1103/PhysRevB.21.3771
46. Glass, C.; Oganov, A.; Hansen, N. USPEX-Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713-720, 10.1016/j.cpc.2006.07.020
47. Oganov, A.; Glass, C. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704 10.1063/1.2210932
48. Lyakhov, A.; Oganov, A.; Valle, M. How to predict very large and complex crystal structures. Comput. Phys. Commun. 2010, 181, 1623-1632, 10.1016/j.cpc.2010.06.007
49. Pickard, C.; Needs, R. J. High-Pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504 10.1103/PhysRevLett.97.045504
50. Pickard, C. J.; Needs, R. J. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201 10.1088/0953-8984/23/5/053201
51. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775, 10.1103/PhysRevB.59.1758
52. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186, 10.1103/PhysRevB.54.11169
53. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396, 10.1103/PhysRevLett.78.1396
54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953
55. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
56. Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
57. Gavryushkin, P. N.; Litasov, K. D.; Dobrosmislov, S. S.; Popov, Z. I. High-pressure phases of sulfur: topological analysis and crystal structure prediction. Phys. Status Solidi 2017, 254, 1600857 10.1002/pssb.201600857
58. Gavryushkin, P. N.; Popov, Z. I.; Litasov, K. D.; Belonoshko, A. B.; Gavryushkin, A. Stability of B2-type FeS at Earth's inner core pressures. Geophys. Res. Lett. 2016, 43, 8435-8440, 10.1002/2016GL069374
59. Li, Y.; Vočadlo, L.; Brodholt, J. P. The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core. Earth Planet. Sci. Lett. 2018, 493, 118-127, 10.1016/j.epsl.2018.04.013
60. Zaitsev, A. I.; Dobrokhotova, Zh. V; Litvina, A. D.; Mogutnov, B. M. Thermodynamic Properties and Phase-Equilibria in the Fe-P System. J. Chem. Soc., Faraday Trans. 1995, 91, 703-712, 10.1039/FT9959100703
61. Stewart, A. J.; Schmidt, M. W. Sulfur and phosphorus in the Earth's core: The Fe-P-S system at 23 GPa. Geophys. Res. Lett. 2007, 34, L13201 10.1029/2007GL030138
62. Mookherjee, M.; Nakajima, Y.; Steinle-Neumann, G.; Glazyrin, K.; Wu, X.; Dubrovinsky, L.; McCammon, C.; Chumakov, A. High-pressure behavior of iron carbide (Fe7C3) at inner core conditions. J. Geophys. Res.: Solid Earth 2011, 116, B04201 10.1029/2010JB007819
63. Mookherjee, M. Elasticity and anisotropy of Fe3C at high pressures. Am. Mineral. 2011, 96, 1530-1536, 10.2138/am.2011.3917
64. Litasov, K. D.; Popov, Z. I.; Gavryushkin, P. N.; Ovchinnikov, S. G.; Fedorov, A. S. First-principles calculations of the equations of state and relative stability of iron carbides at the Earth's core pressures. Russ. Geol. Geophys. 2015, 56, 164-171, 10.1016/j.rgg.2015.01.010
|