Инд. авторы: Inerbaev T.M., Sagatov N., Sagatova D., Gavryushkin P.N., Akilbekov A.T., Litasov K.D.
Заглавие: Phase stability in nickel phosphides at high pressures
Библ. ссылка: Inerbaev T.M., Sagatov N., Sagatova D., Gavryushkin P.N., Akilbekov A.T., Litasov K.D. Phase stability in nickel phosphides at high pressures // ACS Earth and Space Chemistry. - 2020. - Vol.4. - Iss. 11. - P.1978-1984. - ISSN 2472-3452.
Внешние системы: DOI: 10.1021/acsearthspacechem.0c00181; РИНЦ: 45153593; WoS: 000592964500008;
Реферат: eng: Phosphorus is one of the potential light elements of the core of the Earth and other planets. The high-pressure behavior of phosphorus compounds with nickel and iron attracts considerable attention due to their abundance in iron meteorites. In the present work, with modern methods of crystal structure prediction, we investigate the structures and stability of compounds in the Ni-P system at pressures of 100-400 GPa. As a result, a homologous series of discrete compounds (Ni, P), consisting of Ni14P, Ni12P, Ni10 P, Ni8P, Ni7P, Ni5P, and Ni3P was found. Phosphorus shows sufficient solubility in the face-centered cubic (fcc) structure of Ni, and up to 25 mol % of this element can be dissolved at low temperatures. Based on the comparison of compounds in the Ni-P and Fe-P systems, we suggest that at high pressures Ni facilitates phosphorus dissolution in the closed-packed structure of d-metals, and dissolution of P in the (Ni, P) alloy will be higher than that in pure Fe. For the Ni3P compound, a new high-pressure phase with the Cmca symmetry is predicted. This structure can be described as deformed fcc packing and also belongs to the ordered representatives of the series of (Ni, P) solid solutions. The transition from the low-pressure phase of Ni3P-I4¯ to the Cmca phase occurs at a pressure of 62 GPa, regardless of the external temperature. Ni2P is stabilized at a pressure above 200 GPa in the form of an allabogdanite structure. The transition from transjordanite to allabogdanite occurs at 78-88 GPa and 0-2000 K.
Ключевые слова: phase transitions; phase stability; density functional theory; crystal structure prediction; polymorphism;
Издано: 2020
Физ. характеристика: с.1978-1984
Цитирование: 1. Skála, R.; Císařová, I. Crystal structure of meteoritic schreibersites: determination of absolute structure. Phys. Chem. Miner. 2005, 31, 721-732, 10.1007/s00269-004-0435-6 2. Skála, R.; Drábek, M. Nickelphosphide from the Vicenice octahedrite: Rietveld crystal structure refinement of a synthetic analogue. Mineral. Mag. 2003, 67, 783-792, 10.1180/0026461036740134 3. Buseck, P. R. Phosphide from metorites: barringerite, a new iron-nickel mineral. Science 1969, 165, 169-171, 10.1126/science.165.3889.169 4. Britvin, S. N.; Rudashevsky, N. S.; Krivovichev, S. V.; Burns, P. C.; Polekhovsky, Y. S. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. Am. Mineral. 2002, 87, 1245-1249, 10.2138/am-2002-8-924 5. Pratesi, G.; Bindi, L.; Moggi-Cecchi, V. Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. Am. Mineral. 2006, 91, 451-454, 10.2138/am.2006.2095 6. Reed, S. J. B. Perryite in the Kota-Kota and South Oman enstatite chondrites. Mineral. Mag. J. Mineral. Soc. 1968, 36, 850-854, 10.1180/minmag.1968.036.282.13 7. Britvin, S. N.; Shilovskikh, V. V.; Pagano, R.; Vlasenko, N. S.; Zaitsev, A. N.; Krzhizhanovskaya, M. G.; Lozhkin, M. S.; Zolotarev, A. A.; Gurzhiy, V. V. Allabogdanite, the high-pressure polymorph of (Fe,Ni)2P, a stishovite-grade indicator of impact processes in the Fe-Ni-P system. Sci. Rep. 2019, 9, 1047 10.1038/s41598-018-37795-x 8. Britvin, S. N.; Murashko, M. N.; Vapnik, Y.; Polekhovsky, Y. S.; Krivovichev, S. V.; Vereshchagin, O. S.; Vlasenko, N. S.; Shilovskikh, V. V.; Zaitsev, A. N. Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Miner. 2019, 46, 361-369, 10.1007/s00269-018-1008-4 9. Britvin, S. N.; Vapnik, Y.; Polekhovsky, Y. S.; Krivovichev, S. V.; Krzhizhanovskaya, M. G.; Gorelova, L. A.; Vereshchagin, O. S.; Shilovskikh, V. V.; Zaitsev, A. N. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineral. Petrol. 2019, 113, 237-248, 10.1007/s00710-018-0647-y 10. Britvin, S. N.; Murashko, M. N.; Vapnik, Y.; Polekhovsky, Y. S.; Krivovichev, S. V.; Vereshchagin, O. S.; Shilovskikh, V. V.; Vlasenko, N. S.; Krzhizhanovskaya, M. G. Halamishite, Ni5P4, a new terrestrial phosphide in the Ni-P system. Phys. Chem. Miner. 2020, 47, 3 10.1007/s00269-019-01073-7 11. Litasov, K. D.; Shatskiy, A. F. Composition of the Earth's core: A review. Russ. Geol. Geophys. 2016, 57, 22-46, 10.1016/j.rgg.2016.01.003 12. Litasov, K. D.; Teplyakova, S. N.; Shatskiy, A. F.; Kuper, K. E. Fe-Ni-P-S melt pockets in Elga IIE iron meteorite: evidence for the origin at high-pressures up to 20 GPa. Minerals 2019, 9, 616 10.3390/min9100616 13. Wu, X.; Mookherjee, M.; Gu, T.; Qin, S. Elasticity and anisotropy of iron-nickel phosphides at high pressures. Geophys. Res. Lett. 2011, 38, L20301 10.1029/2011GL049158 14. Scott, H. P.; Huggins, S.; Frank, M. R.; Maglio, S. J.; Martin, C. D.; Meng, Y.; Santillán, J.; Williams, Q. Equation of state and high-pressure stability of Fe3P-schreibersite: Implications for phosphorus storage in planetary cores. Geophys. Res. Lett. 2007, 34, L06302 10.1029/2006GL029160 15. Dera, P.; Lavina, B.; Borkowski, L. A.; Prakapenka, V. B.; Sutton, S. R.; Rivers, M. L.; Downs, R. T.; Boctor, N. Z.; Prewitt, C. T. High-pressure polymorphism of Fe2P and its implications for meteorites and Earth's core. Geophys. Res. Lett. 2008, 35, L10301 10.1029/2008GL033867 16. Wu, X.; Qin, S. First-principles calculations of the structural stability of Fe2P. J. Phys.: Conf. Ser. 2010, 215, 012110 10.1088/1742-6596/215/1/012110 17. Gu, T.; Wu, X.; Qin, S.; Dubrovinsky, L. In situ high-pressure study of FeP: Implications for planetary cores. Phys. Earth Planet. Inter. 2011, 184, 154-159, 10.1016/j.pepi.2010.11.004 18. Sagatov, N. E.; Gavryushkin, P. N.; Banayev, M. V.; Inerbaev, T. M.; Litasov, K. D. Phase relations in the Fe-P system at high pressures and temperatures from ab initio computations. High Pressure Res. 2020, 40, 235-244, 10.1080/08957959.2020.1740699 19. Litasov, K. D.; Bekker, T. B.; Sagatov, N. E.; Gavryushkin, P. N.; Krinitsyn, P. G.; Kuper, K. E. (Fe,Ni)2P allabogdanite can be an ambient pressure phase in iron meteorites. Sci. Rep. 2020, 10, 8956 10.1038/s41598-020-66039-0 20. Zhao, Z.; Liu, L.; Zhang, S.; Yu, T.; Li, F.; Yang, G. Phase diagram, stability and electronic properties of an Fe-P system under high pressure: a first principles study. RSC Adv. 2017, 7, 15986-15991, 10.1039/C7RA01567D 21. Gu, T.; Fei, Y.; Wu, X.; Qin, S. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores. Earth Planet. Sci. Lett. 2014, 390, 296-303, 10.1016/j.epsl.2014.01.019 22. Gu, T.; Fei, Y.; Wu, X.; Qin, S. Phase stabilities and spin transitions of Fe3(S1-xPx) at high pressure and its implications in meteorites. Am. Mineral. 2016, 101, 205-210, 10.2138/am-2016-5466 23. Birch, F. Elasticity and constitution of the Earth's interior. J. Geophys. Res. 1952, 57, 227-286, 10.1029/JZ057i002p00227 24. Allègre, C. J.; Poirier, J.-P.; Humler, E.; Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 1995, 134, 515-526, 10.1016/0012-821X(95)00123-T 25. McDonough, W.; Sun, S.-s. The composition of the Earth. Chem. Geol. 1995, 120, 223-253, 10.1016/0009-2541(94)00140-4 26. Nisar, J.; Ahuja, R. Structure behavior and equation of state (EOS) of Ni2P and (Fe1-xNix)2P (allabogdanite) from first-principles calculations. Earth Planet. Sci. Lett. 2010, 295, 578-582, 10.1016/j.epsl.2010.04.047 27. Ilnitskaya, O.; Akselrud, L.; Mikhalenko, S.; Kuzma, Y. Crystal-Structure of Alpha-Ni8P3. Kristallografiya 1987, 32, 50-54 28. Rundqvist, S.; Larsson, E. The crystal structure of Ni12P5. Acta Chem. Scand. 1959, 13, 50-54, 10.3891/acta.chem.scand.13-0551 29. Rundqvist, S. Phosphides of the B31(MnP) structure type. Acta Chem. Scand. 1962, 16, 287-292, 10.3891/acta.chem.scand.16-0287 30. Elfström, M. Physical properties of lower nickel phosphides. Acta Chem. Scand. 1965, 19, 1694-1704 31. Larsson, E. An X-ray investigation of Ni-P system and crystal structures of NiP and NiP2. Ark. Kemi 1965, 23, 335-338 32. Donohue, P. C.; Bither, T. A.; Young, H. S. High-pressure s ynthesis of pyrite-type nickel diphosphide and nickel diarsenide. Inorg. Chem. 1968, 7, 998-1001, 10.1021/ic50063a031 33. Rundqvist, S. T. Structure and bonding in skutterudite-type phosphides. Ark. Kemi 1968, 30, 103-106 34. Dera, P.; Lavina, B.; Borkowski, L. A.; Prakapenka, V. B.; Sutton, S. R.; Rivers, M. L.; Downs, R. T.; Boctor, N. Z.; Prewitt, C. T. Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores. J. Geophys. Res.: Solid Earth 2009, 114, B03201 10.1029/2008JB005944 35. Dera, P.; Lazarz, J. D.; Lavina, B. Pressure-induced development of bonding in NiAs type compounds and polymorphism of NiP. J. Solid State Chem. 2011, 184, 1997-2003, 10.1016/j.jssc.2011.05.050 36. Dera, P.; Nisar, J.; Ahuja, R.; Tkachev, S.; Prakapenka, V. B. New type of possible high-pressure polymorphism in NiAs minerals in planetary cores. Phys. Chem. Miner. 2013, 40, 183-193, 10.1007/s00269-012-0560-6 37. Litasov, K. D.; Shatskiy, A. F.; Minin, D. A.; Kuper, K. E.; Ohfuji, H. The Ni-Ni2P phase diagram at 6 GPa with implication to meteorites and super-reduced terrestrial rocks. High Pressure Res. 2019, 39, 561-578, 10.1080/08957959.2019.1672677 38. Chen, J.-S.; Yu, C.; Lu, H.; Chen, J.-M. Theoretical study on the phase stability, elasticity, hardness and electronic structures of Ni-P compounds. Phase Transitions 2016, 89, 1078-1089, 10.1080/01411594.2016.1146952 39. Zhao, D.; Zhou, L.; Du, Y.; Wang, A.; Peng, Y.; Kong, Y.; Sha, C.; Ouyang, Y.; Zhang, W. Structure, elastic and thermodynamic properties of the Ni-P system from first-principles calculations. CALPHAD 2011, 35, 284-291, 10.1016/j.calphad.2011.03.002 40. Mizutani, U. Electronic Structure of Metallic Glasses. In Progress in Materials Science; Elsevier Science & Technology Books, 1984. 41. Thube, M. G.; Kulkarni, S. K.; Huerta, D.; Nigavekar, A. S. X-ray-photoelectron-spectroscopy study of the electronic structure of Ni-P metallic glasses. Phys. Rev. B 1986, 34, 6874-6879, 10.1103/PhysRevB.34.6874 42. Jaswal, S. S. Electronic structure and properties of transition-metal-metalloid glasses: Ni1-xPx. Phys. Rev. B 1986, 34, 8937-8940, 10.1103/PhysRevB.34.8937 43. Kojnok, J.; Szasz, A.; Krasser, W.; Mark, G.; Stepanjuk, V. S.; Katsnelson, A. A. Local density of states in amorphous Ni-P alloys. J. Phys.: Condens. Matter 1992, 4, 2487-2503, 10.1088/0953-8984/4/10/013 44. Martyak, N. M. Characterization of Thin Electroless Nickel Coatings. Chem. Mater. 1994, 6, 1667-1674, 10.1021/cm00046a019 45. Hines, W. A.; Glover, K.; Clark, W. G.; Kabacoff, L. T.; Modzelewski, C. U.; Hasegawa, R.; Duwez, P. Electronic structure of the Ni-Pd-P and Ni-Pt-P metallic glasses: A pulsed NMR study. Phys. Rev. B 1980, 21, 3771-3780, 10.1103/PhysRevB.21.3771 46. Glass, C.; Oganov, A.; Hansen, N. USPEX-Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713-720, 10.1016/j.cpc.2006.07.020 47. Oganov, A.; Glass, C. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704 10.1063/1.2210932 48. Lyakhov, A.; Oganov, A.; Valle, M. How to predict very large and complex crystal structures. Comput. Phys. Commun. 2010, 181, 1623-1632, 10.1016/j.cpc.2010.06.007 49. Pickard, C.; Needs, R. J. High-Pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504 10.1103/PhysRevLett.97.045504 50. Pickard, C. J.; Needs, R. J. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201 10.1088/0953-8984/23/5/053201 51. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775, 10.1103/PhysRevB.59.1758 52. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186, 10.1103/PhysRevB.54.11169 53. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396, 10.1103/PhysRevLett.78.1396 54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953 55. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021 56. Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970 57. Gavryushkin, P. N.; Litasov, K. D.; Dobrosmislov, S. S.; Popov, Z. I. High-pressure phases of sulfur: topological analysis and crystal structure prediction. Phys. Status Solidi 2017, 254, 1600857 10.1002/pssb.201600857 58. Gavryushkin, P. N.; Popov, Z. I.; Litasov, K. D.; Belonoshko, A. B.; Gavryushkin, A. Stability of B2-type FeS at Earth's inner core pressures. Geophys. Res. Lett. 2016, 43, 8435-8440, 10.1002/2016GL069374 59. Li, Y.; Vočadlo, L.; Brodholt, J. P. The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core. Earth Planet. Sci. Lett. 2018, 493, 118-127, 10.1016/j.epsl.2018.04.013 60. Zaitsev, A. I.; Dobrokhotova, Zh. V; Litvina, A. D.; Mogutnov, B. M. Thermodynamic Properties and Phase-Equilibria in the Fe-P System. J. Chem. Soc., Faraday Trans. 1995, 91, 703-712, 10.1039/FT9959100703 61. Stewart, A. J.; Schmidt, M. W. Sulfur and phosphorus in the Earth's core: The Fe-P-S system at 23 GPa. Geophys. Res. Lett. 2007, 34, L13201 10.1029/2007GL030138 62. Mookherjee, M.; Nakajima, Y.; Steinle-Neumann, G.; Glazyrin, K.; Wu, X.; Dubrovinsky, L.; McCammon, C.; Chumakov, A. High-pressure behavior of iron carbide (Fe7C3) at inner core conditions. J. Geophys. Res.: Solid Earth 2011, 116, B04201 10.1029/2010JB007819 63. Mookherjee, M. Elasticity and anisotropy of Fe3C at high pressures. Am. Mineral. 2011, 96, 1530-1536, 10.2138/am.2011.3917 64. Litasov, K. D.; Popov, Z. I.; Gavryushkin, P. N.; Ovchinnikov, S. G.; Fedorov, A. S. First-principles calculations of the equations of state and relative stability of iron carbides at the Earth's core pressures. Russ. Geol. Geophys. 2015, 56, 164-171, 10.1016/j.rgg.2015.01.010