Инд. авторы: Grishina S.N., Goryainov S.V., Seryotkin Y., Koděra P., Oreshonkov A., Šimko F., Polozov A.G.
Заглавие: Application of raman spectroscopy for identification of rinneite (k3nafecl6) in inclusions in minerals
Библ. ссылка: Grishina S.N., Goryainov S.V., Seryotkin Y., Koděra P., Oreshonkov A., Šimko F., Polozov A.G. Application of raman spectroscopy for identification of rinneite (k3nafecl6) in inclusions in minerals // Journal of Raman Spectroscopy. - 2020. - Vol.51. - Iss. 12. - P.2505-2516. - ISSN 0377-0486. - EISSN 1097-4555.
Внешние системы: DOI: 10.1002/jrs.6005; РИНЦ: 45283911;
Реферат: eng: Solid daughter phases in fluid and salt melt inclusions in minerals provide important clues to characterization of mineral-forming processes. The analysis of the fluid inclusions often requires the exposure of the daughter minerals. Rinneite (K3NaFeCl6), which is a hygroscopic mineral, decomposes in air and cannot thus be identified by conventional methods. A combined approach has been applied for investigation of synthetic and natural rinneite to acquire its diagnostic Raman spectrum for a nondestructive identification. We used natural rinneite inclusions in halite, suitable for applying a complex of methods, to clear up the reference spectrum. Improved high-resolution X-ray diffraction (XRD) data obtained from natural rinneite inclusion are comparable with that of previously published, with similar unit cell dimensions. Polarized Raman spectra of natural inclusions were obtained using different geometries and polarization of the incident and scattered light. Interpretation of experimental Raman spectra was performed within the framework of lattice dynamics simulations and group analysis. Individual spectral bands are interpreted in terms of Raman-active vibrational modes of K3NaFeCl6 structural units. Raman spectrum of synthetic rinneite with main peaks at 75, 91, 103, 143, 167, 171, 187, and 239 cm−1 agrees well with the spectra of rinneite inclusions in halite from the Nepa potash deposit and rinneite daughter minerals in salt melt inclusions hosted by quartz veinlets from the porphyry gold systems in the Central Slovakia Volcanic Field. This provides a firm basis for any future identification of this mineral worldwide, using nondestructive Raman spectroscopy.
Ключевые слова: weathering; Fe-oxyhydroxides; Daughter mineral; Rinneite; fluid inclusion;
Издано: 2020
Физ. характеристика: с.2505-2516
Цитирование: 1. R. C. Newton, C. E. Manning, Geofluids 2010, 73, 1597. 2. P. Lecumberri-Sanchez, M. Steele-MacInnis, P. Weis, T. Driesner, R. J. Bodnar, Geology 2015, 43(12), 1063. 3. V. B. Naumov, I. P. Solovova, V. A. Kovalenker, V. L. Rusinov, N. N. Kononkova, Trans. (Doklady). USSR Acad. Sci. 1990, 5, 199. 4. R. J. Bodnar, P. Lecumberri-Sanchez, D. Moncada, M. Steele-MacInnis, in Treatise on geochemistry, Second ed. (Eds: H. D. Holland, K. K. Turekian), Elsevier, Oxford 2014 119. 5. L. Scholten, C. Schmidt, P. Lecumberri-Sanchez, M. Newville, A. Lanzirotti, M.-L. C. Sirbescu, M. Steele-MacInnis, Geochim. Cosmochim. Acta. 2019, 252, 126. 6. A. Audétat, T. Pettke, C. A. Heinrich, R. J. Bodnar, Econ. Geol. Bull. Soc. Econ. Geol. 2008, 103(5), 877. 7. P. Koděra, C. A. Heinrich, M. Wälle, J. Lexa, Geology 2014, 42(6), 495. 8. P. Koděra, A. H. Rankin, P. J. Murphy, Acta Mineral. Petrogr. Abstr. Ser. 2003, 2, 101. 9. P. Koděra, A. Takács, T. Váczi, J. Luptáková, P. Antal, Ext. Abstr. Vol. “XXIII ECROFI conf.”, Leeds 2015, 86. 10. M. L. Frezzotti, F. Tecce, A. Casagli, J. Geochem. Explor. 2012, 112, 1. 11. V. Hurai, M. Huraiová, M. Slobodník, R. Thomas, Geofluids: Developments in microthermometry, spectroscopy, thermodynamics, and stable isotopes, Elsevier, Amsterdam 2015. 12. A. H. Rankin, M. H. Ramsey, B. Coles, F. Van Langevelde, C. R. Thomas, Geochim. Cosmochim. Acta. 1992, 56(1), 67. 13. M. Baumgartner, R. J. Bakker, Chem. Geol. 2010, 275, 58. 14. P. Koděra, Á. Takács, M. Racek, F. Šimko, J. Luptáková, T. Váczi, P. Antal, Eur. J. Mineral. 2017, 29(6), 995. 15. H. Borchert, Geol. Soc. Am. Bull. 1969, 80, 821. 16. A. S. Kolosov, A. M. Pustilnikov, Dokl. Akad. Nauk SSSR 1967, 946. 17. D. B. Smith, A. Crosby, Econ. Geol. Bull. Soc. Econ. Geol. 1979, 74, 397. 18. A. Dietrich, G. Behnke, T. Thonelt, Kali Und Steinsalz 2004, 3, 6. 19. M. Li, M. Yan, Z. Wang, X. Liu, X. Fang, J. Li, Ore. Geol. Rev. 2015, 69, 174. 20. C. J. Talbot, R. Farhadi, P. Aftabi, Ore. Geol. Rev. 2009, 35, 352. 21. M. Russo, I. Punzo, I minerali del Somma-Vesuvio, AMI, Cremona 2004. 22. H. Svensen, S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, B. Jamtveit, Earth Planet Sci. Lett. 2009, 377(3–4), 490. 23. S. Grishina, J. Dubessy, A. Kontorovich, J. Pironon, Eur. J. Mineral. 1992, 4(5), 1187. 24. S. Grishina, P. Koděra, L. M. Uriarte, J. Dubessy, A. Oreshonkov, S. Goryainov, F. Šimko, I. Yakovlev, E. M. Roginskii, Chem. Geol. 2018, 493, 532. 25. S. Grishina, J. Pironon, M. Mazurov, S. Goryanov, A. Pustilnikov, G. Fon-der-Flaas, A. Guerci, Org. Geochem. 1998, 25(5), 297. 26. S. Grishina, A. G. Polozov, Y. Maximovich, Acta Mineral. Petrogr. Abstr. Ser. 2019, 10, 46. 27. R. Hanes, F. Bakos, P. Fuchs, P. Žitňan, V. Konečný, Miner. Slovaca 2010, 42, 15. 28. F. Bakos, P. Fuchs, R. Hanes, P. Žitňan, V. Konečný, Miner. Slovaca 2010, 42, 1. 29. P. Koděra, J. Lexa, A. Biroň, J. Žitňan, Miner. Slovaca 2010, 42, 33. 30. L. B. Gustafson, J. P. Hunt, Econ. Geol. Bull. Soc. Econ. Geol. 1975, 70, 857. 31. A. Bellanca, Periodico di Mineralogia 1948, 16, 199. 32. S. V. Goryainov, A. Y. Likhacheva, S. V. Rashchenko, A. S. Shubin, V. P. Afanas'ev, N. P. Pokhilenko, J. Raman Spectrosc. 2014, 45(4), 305. 33. Model S506 Interactive Peak Fit, Users' Manual, Canberra Industries Inc., Canberra 2002. 34. O. Diffraction, CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd., Abingdon 2005. 35. G. M. Sheldrick, Acta Cryst. 2015, A71, 3. 36. M. B. Smirnov, V. Y. Kazimirov, LADY: software for lattice dynamics simulations, JINR Communications, Dubna 2001. 37. M. Smirnov, R. Baddour-Hadjean, J. Chem. Phys. 2004, 121, 2348. 38. Y. G. Denisenko, V. V. Atuchin, M. S. Molokeev, A. S. Aleksandrovsky, A. S. Krylov, A. S. Oreshonkov, S. S. Volkova, O. V. Andreev, Inorg. Chem. 2018, 57(21), 13279. 39. V. V. Atuchin, A. S. Aleksandrovsky, O. D. Chimitova, T. A. Gavrilova, A. S. Krylov, M. S. Molokeev, A. S. Oreshonkov, B. G. Bazarov, J. G. Bazarova, J. Phys, Chem. C 2014, 118, 15404. 40. V. V. Atuchin, A. S. Aleksandrovsky, M. S. Molokeev, A. S. Krylov, A. S. Oreshonkov, D. Zhou, J. Alloys, Compd. 2017, 729, 843. 41. A. S. Oreshonkov, J. V. Gerasimova, A. A. Ershov, A. S. Krylov, K. A. Shaykhutdinov, A. N. Vtyurin, M. S. Molokeev, K. Y. Terent'ev, N. V. Mihashenok, J. Raman Spectrosc. 2016, 47, 531. 42. C. S. Lim, A. S. Aleksandrovsky, M. S. Molokeev, A. S. Oreshonkov, D. A. Ikonnikov, V. V. Atuchin, Dalton T. 2016, 45, 15541. 43. A. S. Krylov, A. N. Vtyurin, A. S. Oreshonkov, V. N. Voronov, S. N. Krylova, J. Raman Spectrosc. 2013, 44, 763. 44. B. N. Figgis, A. N. Sobolev, E. S. Kucharski, V. Broughton, Acta Cryst. 2000, C56, e228. 45. M. J. Cooper, K. D. Rouse, Acta Cryst. 1973, A29, 514. 46. D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of instrumental analysis, 7th ed., Cengage, Hampshire 2018. 47. D. A. Long, Raman spectroscopy, McGraw-Hill, Inc., New York 1977. 48. H. A. Szymanski, Raman spectroscopy: Theory and practice, Plenum Press, New York 1967. 49. F. Froment, A. Tournié, P. Colomban, J. Raman Spectrosc. 2008, 39, 560. 50. J. K. Beattie, C. J. Moore, Inorg. Chem. 1982, 21. 51. E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondraschek, Phase Transitions 2003, 76, 155. 52. L. Bellot-Gurlet, D. Neff, S. Réguer, J. Monnier, M. Saheb, P. Dillmann, J. Nano, Res. 2009, 8, 147. 53. L. Mazzetti, P. J. Thistlethwaite, J. Raman Spectrosc. 2002, 33(2), 104. 54. Y. Cudennec, A. Lecerf, J. Solid State Chem. 2006, 179(3), 716. 55. M. E. Kompan, V. G. Malyshkin, Tech. Phys. Lett. 2018, 44, 77.