Инд. авторы: Gavryushkin P.N., Sagatov N.E., Banaev M.V., Belonoshko A.B., Litasov K.D.
Заглавие: Disordered aragonite: the new high-pressure, high-temperature phase of caco3
Библ. ссылка: Gavryushkin P.N., Sagatov N.E., Banaev M.V., Belonoshko A.B., Litasov K.D. Disordered aragonite: the new high-pressure, high-temperature phase of caco3 // Journal of Physical Chemistry C. - 2020. - Vol.124. - Iss. 48. - P.26467-26473. - ISSN 1932-7447. - EISSN 1932-7455.
Внешние системы: DOI: 10.1021/acs.jpcc.0c08309; РИНЦ: 45072445; WoS: 000598118800040;
Реферат: eng: Phases of CaCO3 stabilized at high pressures and temperatures are the potential agents of the global carbon cycle, transferring oxidized carbon in deep Earth's interiors and thus are of special interest for the Earth sciences. Here, we report finding of the new phase, named disarag, which is dynamically disordered aragonite with freely rotating CO3 groups, similar to that in the CaCO3-V phase with a calcite-like structure. Disarag has a stability field expanding from 3 to 10 GPa and from 1600 to 2000 K. Consideration of twinned structure enlarges this field, decreasing the transition temperature from aragonite to disarag at 100-300 K. At P-T parameters corresponding to the transition from aragonite to disarag, the marked disappearance of the diffraction peaks is observed in in situ experiments. We show that, among known phases of CaCO3, disarag is the best candidate for the explanation of this reconstruction of diffraction pattern. Also, for the first time, using ab initio molecular dynamics technique, we determine equilibrium curves between calcite and its disordered phases CaCO3-IV and CaCO3-V. We show that the transitions of alkaline-earth carbonates CaCO3, SrCO3, and BaCO3 to the disordered states start when the critical angle of librations of the CO3 group about the axis perpendicular to the molecular three-fold axis exceeds 45°. The calcite-like structure of CaCO3 is characterized by more intense librations than the aragonite-like structure of this compound and reaches the critical angle at lower temperatures. As a result, calcite transforms into the disordered state at lower temperatures than aragonite.
Издано: 2020
Физ. характеристика: с.26467-26473
Цитирование: 1. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-III and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977 2. Merlini, M.; Crichton, W. A.; Chantel, J.; Guignard, J.; Poli, S. Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3at high pressure. Mineral. Mag. 2014, 78, 225-233, 10.1180/minmag.2014.078.2.01 3. Ishizawa, N.; Setoguchi, H.; Yanagisawa, K. Structural evolution of calcite at high temperatures: Phase V unveiled. Sci. Rep. 2013, 3, 2832, 10.1038/srep02832 4. Dove, M. T.; Swainson, I. P.; Powell, B. M.; Tennant, D. C. Neutron powder diffraction study of the orientational order-disorder phase transition in calcite, CaCO3. Phys. Chem. Miner. 2005, 32, 493-503, 10.1007/s00269-005-0026-1 5. Hou, M.; Zhang, Q.; Tao, R.; Liu, H.; Kono, Y.; Mao, H.-k.; Yang, W.; Chen, B.; Fei, Y. Temperature-induced amorphization in CaCO3at high pressure and implications for recycled CaCO3in subduction zones. Nat. Commun. 2019, 10, 1963, 10.1038/s41467-019-09742-5 6. Smith, D.; Lawler, K. V.; Martinez-Canales, M.; Daykin, A. W.; Fussell, Z.; Smith, G. A.; Childs, C.; Smith, J. S.; Pickard, C. J.; Salamat, A. Postaragonite phases of CaCO3at lower mantle pressures. Phys. Rev. Mater. 2018, 2, 013605 10.1103/PhysRevMaterials.2.013605 7. Lobanov, S. S. et al. Raman spectroscopy and X-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B 2017, 96, 104101, 10.1103/PhysRevB.96.104101 8. Suito, K.; Namba, J.; Horikawa, T.; Taniguchi, Y.; Sakurai, N.; Kobayashi, M.; Onodera, A.; Shimomura, O.; Kikegawa, T. Phase relations of CaCO3at high pressure and high temperature. Am. Mineral. 2001, 86, 997-1002, 10.2138/am-2001-8-906 9. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. PVT equation of state of CaCO3aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91, 10.1016/j.pepi.2017.02.006 10. Shatskiy, A.; Borzdov, Y. M.; Litasov, K. D.; Kupriyanov, I. N.; Ohtani, E.; Palyanov, Y. N. Phase relations in the system FeCO3-CaCO3at 6 GPa and 900-1700 C and its relation to the system CaCO3-FeCO3-MgCO3. Am. Mineral. 2014, 99, 773-785, 10.2138/am.2014.4721 11. Bragg, W. L. The structure of aragonite. Proc. R. Soc. London, Ser. A 1924, 105, 16-39, 10.1098/rspa.1924.0002 12. De Villiers, J. P. Crystal structures of aragonite, strontianite, and witherite. Am. Mineral. 1971, 56, 758-767 13. Marsh, M. E.; Sass, R. L. Aragonite twinning in the molluscan bivalve hinge ligament. Science 1980, 208, 1262-1263, 10.1126/science.208.4449.1262 14. Suzuki, M.; Kim, H.; Mukai, H.; Nagasawa, H.; Kogure, T. Quantitative XRD analysis of {110} twin density in biotic aragonites. J. Struct. Biol. 2012, 180, 458-468, 10.1016/j.jsb.2012.09.004 15. Gavryushkin, P. N.; Rečnik, A.; Daneu, N.; Sagatov, N.; Belonoshko, A. B.; Popov, Z. I.; Ribić, V.; Litasov, K. D. Temperature induced twinning in aragonite: transmission electron microscopy experiments and ab initio calculations. Z. Kristallogr. Cryst. Mater. 2019, 234, 79-84, 10.1515/zkri-2018-2109 16. Shin, Y. A. et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials. Nat. Commun. 2016, 7, 1-10, 10.1038/ncomms10772 17. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758, 10.1103/PhysRevB.59.1758 18. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244, 10.1103/PhysRevB.45.13244 19. Graf, D. L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 1961, 46, 1283-1316 20. Ukita, M.; Toyoura, K.; Nakamura, A.; Matsunaga, K. Pressure-induced phase transition of calcite and aragonite: A first principles study. J. Appl. Phys. 2016, 120, 142118, 10.1063/1.4961723 21. Mirwald, P. W. A differential thermal analysis study of the high-temperature polymorphism of calcite at high pressure. Contrib. Mineral. Petrol. 1976, 59, 33-40, 10.1007/BF00375109 22. Redfern, S. A. T. Structural variations in carbonates. Rev. Mineral. Geochem. 2000, 41, 289-308, 10.2138/rmg.2000.41.10 23. Kawano, J.; Miyake, A.; Shimobayashi, N.; Kitamura, M. Molecular dynamics simulation of the rotational order-disorder phase transition in calcite. J. Phys. Condens. Matter 2009, 21, 095406 10.1088/0953-8984/21/9/095406 24. Shatskiy, A.; Podborodnikov, I. V.; Arefiev, A. V.; Minin, D. A.; Chanyshev, A. D.; Litasov, K. D. Revision of the CaCO3-MgCO3phase diagram at 3 and 6 GPa. Am. Mineral. 2018, 103, 441-452, 10.2138/am-2018-6277 25. Fedoraeva, A. S.; Shatskiy, A.; Litasov, K. D. The join CaCO3-CaSiO3at 6 GPa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. High Press. Res. 2019, 39, 547-560, 10.1080/08957959.2019.1660325 26. Bagdassarov, N. S.; Slutskii, A. B. Phase transformations in calcite from electrical impedance measurements. Phase Transitions 2003, 76, 1015-1028, 10.1080/0141159031000098233 27. Li, Z.; Li, J.; Lange, R.; Liu, J.; Militzer, B. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle. Earth Planet. Sci. Lett. 2017, 457, 395-402, 10.1016/j.epsl.2016.10.027 28. Syracuse, E. M.; van Keken, P. E.; Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 2010, 183, 73-90, 10.1016/j.pepi.2010.02.004 29. Antao, S. M.; Hassan, I. The orthorhombic structure of CaCO3, SrCO3, PbCO3and BaCO3: linear structural trends. Can. Mineral. 2009, 47, 1245-1255, 10.3749/canmin.47.5.1245 30. Markgraf, S. A.; Reeder, R. J. High-temperature structure refinements of calcite and magnesite. Am. Mineral. 1985, 70, 590-600 31. Ye, Y.; Smyth, J. R.; Boni, P. Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction. Am. Mineral. 2012, 97, 707-712, 10.2138/am.2012.3923 32. Cai, G.; Phillips, A. E.; Tucker, M. G.; Dove, M. T. Neutron scattering study of the orientational disorder and phase transitions in barium carbonate. J. Phys. Condens. Matter 2020, 32, 374014, 10.1088/1361-648X/ab8cde 33. Redfern, S. A. T.; Salje, E.; Navrotsky, A. High-temperature enthalpy at the orientational order-disorder transition in calcite: implications for the calcite/aragonite phase equilibrium. Contrib. Mineral. Petrol. 1989, 101, 479-484, 10.1007/BF00372220