Инд. авторы: Borodina U.O, Goryainov S.V., Shatskiy A.F., Rashchenko S.V., Oreshonkov A.
Заглавие: Raman study of 3.65 å-phase mgsi(oh)6 under high pressure and the bands assignment
Библ. ссылка: Borodina U.O, Goryainov S.V., Shatskiy A.F., Rashchenko S.V., Oreshonkov A. Raman study of 3.65 å-phase mgsi(oh)6 under high pressure and the bands assignment // High Pressure Research. - 2020. - Vol.40. - Iss. 4. - P.495-510. - ISSN 0895-7959. - EISSN 1477-2299.
Внешние системы: DOI: 10.1080/08957959.2020.1830078; РИНЦ: 45232905;
Реферат: eng: 3.65 Å-phase (or hydroxide-perovskite), MgSi(OH)6, is a representative of dense hydrous magnesium silicates (DHMS) with maximum water content (up to ~35 wt.% H2O) and thus is of interest as one of the largest repositories of water among all the known hydrous phases. Sample of 3.65 Å-phase, grown in DIA-type multianvil apparatus, was studied by Raman spectroscopy under pressure up to ~7 GPa with diamond anvil cell. Interpretation of the Raman spectrum was carried out using lattice-dynamical simulations within ab initio DFT method (CASTEP code). Additionally, OH-stretching bands are analyzed with two phenomenological models: empirical model by Novak and Libowitzky, using correlation between O–O distance and the wavenumber of the OH-stretching band, and theoretical model, using double Morse potentials of hydrogen bond O–H···O. Upon the pressure increase, octahedral and bending δ(ОН) vibrations exhibit linear positive pressure shift, whereas wavenumbers of the ОН-stretching modes show inverse pressure dependence.
Ключевые слова: Six-coordinated silicon; raman spectra; 3.65 Å-phase; high pressure; Dense hydrous magnesium silicates;
Издано: 2020
Физ. характеристика: с.495-510
Цитирование: 1. Mookherjee M, Speziale S, Marquardt H, et al. Equation of state and elasticity of the 3.65 Å phase: implications for the X-discontinuity. Am Mineral. 2015; 100 (10): 2199–2208. 2. Sclar CB, Carrison LC, Schwartz CM., Phase equilibria in the system MgO-SiO2-H2O, 20–130 kbar, 350–1300 °C. Am Ceram Soc Bull. 1965; 44 (8): 634. 3. Ringwood A, Major A., High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O. Earth Planet Sci Lett. 1967; 2 (2): 130–133. 4. Liu L-G., Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter. 1987; 49 (1–2): 142–167. 5. Kanzaki M., Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter. 1991; 66 (3–4): 307–312. 6. Ohtani E, Shibata T, Kubo T, et al. Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys Res Lett. 1995; 22 (19): 2553–2556. 7. Kudoh Y, Nagase T, Mizohata H, et al. Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050 °C. Geophys Res Lett. 1997; 24 (9): 1051–1054. 8. Ohtani E, Mizobata H, Kudoh Y, et al. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett. 1997; 24 (9): 1047–1050. 9. Frost DJ, Fei Y., Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth. 1998; 103 (B4): 7463–7474. 10. Pacalo RE, Parise JB., Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400 °C and 20 GPa. Am Mineral. 1992; 77 (5–6): 681–684. 11. Sclar C, Morzenti S., High pressure synthesis and geophysical significance of a new hydrous phase in the system MgO-SiO2-H2O. Geological Society of America Abstract Programs. 1971; 3; 698. 12. Pawley AR, Chinnery NJ, Clark SM, et al. Experimental study of the dehydration of 10-Å phase, with implications for its H2O content and stability in subducted lithosphere. Contrib Mineral Petrol. 2011; 162 (6): 1279–1289. 13. Wunder B, Wirth R, Koch-Müller M., The 3.65 Å phase in the system MgO-SiO2-H2O: synthesis, composition, and structure. Am Mineral. 2011; 96 (8–9): 1207–1214. 14. Wunder B, Jahn S, Koch-Müller M, et al. The 3.65 Å phase, MgSi(OH)6: structural insights from DFT-calculations and T-dependent IR spectroscopy. Am Mineral. 2012; 97 (7): 1043–1048. 15. Finger LW, Hazen RM., Crystal chemistry of six-coordinated silicon: A key to understanding the Earth’s deep interior. Acta Crystallogr B Struct Sci. 1991; 47 (5): 561–580. 16. Kleppe A, Welch M, Crichton W, et al. Phase transitions in hydroxide perovskites: a Raman spectroscopic study of stottite, FeGe(OH)6, to 21 GPa. Mineral Mag. 2012; 76 (4): 949–962. 17. Edge R, Taylor H., Crystal structure of thaumasite, a mineral containing [Si(OH)6]2− groups. Nature. 1969; 224 (5217): 363. 18. Zhao J, Ross N, Angel R., New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallogr B Struct Sci. 2004; 60 (3): 263–271. 19. Ohira I, Ohtani E, Sakai T, et al. Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett. 2014; 401: 12–17. 20. Arefiev AV, Shatskiy A, Podborodnikov IV, et al. Melting and subsolidus phase relations in the system K2CO3–MgCO3 at 3 GPa. High Press Res. 2018; 38 (4): 422–439. 21. Gražulis S, Chateigner D, Downs RT, et al. Crystallography Open database–an open-access collection of crystal structures. J Appl Crystallogr. 2009; 42 (4): 726–729. 22. Goryainov S., Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)⋅12H2O at high pressure. J Raman Spectrosc. 2016; 47 (8): 984–992. 23. Goryainov SV, Krylov AS, Pan Y, et al. Raman investigation of hydrostatic and nonhydrostatic compressions of OH-and F-apophyllites up to 8 GPa. J Raman Spectrosc. 2012; 43 (3): 439–447. 24. Brandenburg K, Putz H., Diamond-crystal and molecular structure visualization crystal impact. Rathausgasse. 1999; 30: 1997–2000. 25. Libowitzky E., Correlation of OH stretching frequencies and OH … O hydrogen bond lengths in minerals. Monatshefte für Chemie/Chemical Monthly. 1999; 130 (8): 1047–1059. 26. Novak A., Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct Bond. 1974; 18: 177–215. 27. Goryainov S., A model of phase transitions in double-well Morse potential: Application to hydrogen bond. Phys B. 2012; 407 (21): 4233–4237. 28. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist Cryst Mater. 2005; 220 (5–6): 567–570. 29. Perdew JP, Burke K, Ernzerhof M., Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77 (18): 3865. 30. Lutz H., Hydroxide ions in condensed materials—correlation of spectroscopic and structural data. In: Structure and bonding. Berlin: Springer-Verlag; 1995. Vol. 82. p. 85–103. 31. Li R, Jiang Z, Chen F, et al. Hydrogen bonded structure of water and aqueous solutions of sodium halides: a Raman spectroscopic study. J Mol Struct. 2004; 707 (1–3): 83–88. 32. O'shea D, Bartlett M, Young R., Compositional analysis of apatites with laser-Raman spectroscopy:(OH, F, Cl) apatites. Arch Oral Biol. 1974; 19 (11): 995–1006. 33. Liu Z, El Abedin SZ, Endres F., Raman and FTIR spectroscopic studies of 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, its mixtures with water and the solvation of zinc ions. ChemPhysChem. 2015; 16 (5): 970–977. 34. Fumagalli P, Stixrude L, Poli S, et al. The 10 Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett. 2001; 186 (2): 125–141. 35. Comodi P, Cera F, Dubrovinsky L, et al. The high-pressure behaviour of the 10 Å phase: a spectroscopic and diffractometric study up to 42 GPa. Earth Planet Sci Lett. 2006; 246 (3–4): 444–457. 36. Cynn H, Hofmeister AM., High-pressure IR spectra of lattice modes and OH vibrations in Fe-bearing wadsleyite. J Geophys Res Solid Earth. 1994; 99 (B9): 17717–17727. 37. Cynn H, Hofmeister A, Burnley P, et al. Thermodynamic properties and hydrogen speciation from vibrational spectra of dense hydrous magnesium silicates. Phys Chem Miner. 1996; 23 (6): 361–376. 38. Kleppe AK, Jephcoat AP, Ross NL., Raman spectroscopic studies of phase E to 19 GPa. Am Mineral. 2001; 86 (10): 1275–1281. 39. Hofmeister A, Cynn H, Burnley P, et al. Vibrational spectra of dense, hydrous magnesium silicates at high pressure: importance of the hydrogen bond angle. Am Mineral. 1999; 84 (3): 454–464. 40. Komatsu K, Kagi H, Okada T, et al. Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH. Am Mineral. 2005; 90 (1): 266–270. 41. Chio CH, Sharma SK, Muenow DW., Micro-Raman studies of gypsum in the temperature range between 9 and 373 K. Am Mineral. 2004; 89 (2–3): 390–395. 42. Williams Q, Jeanloz R, McMillan P., Vibrational spectrum of MgSiO3 perovskite: zero-pressure Raman and mid-infrared spectra to 27 GPa. J Geophys Res Solid Earth. 1987; 92 (B8): 8116–8128. 43. Wehinger B, Bosak A, Nazzareni S, et al. Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite). Geophys Res Lett. 2016; 43 (6): 2568–2575.