Цитирование: | 1. Mookherjee M, Speziale S, Marquardt H, et al. Equation of state and elasticity of the 3.65 Å phase: implications for the X-discontinuity. Am Mineral. 2015; 100 (10): 2199–2208.
2. Sclar CB, Carrison LC, Schwartz CM., Phase equilibria in the system MgO-SiO2-H2O, 20–130 kbar, 350–1300 °C. Am Ceram Soc Bull. 1965; 44 (8): 634.
3. Ringwood A, Major A., High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O. Earth Planet Sci Lett. 1967; 2 (2): 130–133.
4. Liu L-G., Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter. 1987; 49 (1–2): 142–167.
5. Kanzaki M., Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter. 1991; 66 (3–4): 307–312.
6. Ohtani E, Shibata T, Kubo T, et al. Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys Res Lett. 1995; 22 (19): 2553–2556.
7. Kudoh Y, Nagase T, Mizohata H, et al. Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050 °C. Geophys Res Lett. 1997; 24 (9): 1051–1054.
8. Ohtani E, Mizobata H, Kudoh Y, et al. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett. 1997; 24 (9): 1047–1050.
9. Frost DJ, Fei Y., Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth. 1998; 103 (B4): 7463–7474.
10. Pacalo RE, Parise JB., Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400 °C and 20 GPa. Am Mineral. 1992; 77 (5–6): 681–684.
11. Sclar C, Morzenti S., High pressure synthesis and geophysical significance of a new hydrous phase in the system MgO-SiO2-H2O. Geological Society of America Abstract Programs. 1971; 3; 698.
12. Pawley AR, Chinnery NJ, Clark SM, et al. Experimental study of the dehydration of 10-Å phase, with implications for its H2O content and stability in subducted lithosphere. Contrib Mineral Petrol. 2011; 162 (6): 1279–1289.
13. Wunder B, Wirth R, Koch-Müller M., The 3.65 Å phase in the system MgO-SiO2-H2O: synthesis, composition, and structure. Am Mineral. 2011; 96 (8–9): 1207–1214.
14. Wunder B, Jahn S, Koch-Müller M, et al. The 3.65 Å phase, MgSi(OH)6: structural insights from DFT-calculations and T-dependent IR spectroscopy. Am Mineral. 2012; 97 (7): 1043–1048.
15. Finger LW, Hazen RM., Crystal chemistry of six-coordinated silicon: A key to understanding the Earth’s deep interior. Acta Crystallogr B Struct Sci. 1991; 47 (5): 561–580.
16. Kleppe A, Welch M, Crichton W, et al. Phase transitions in hydroxide perovskites: a Raman spectroscopic study of stottite, FeGe(OH)6, to 21 GPa. Mineral Mag. 2012; 76 (4): 949–962.
17. Edge R, Taylor H., Crystal structure of thaumasite, a mineral containing [Si(OH)6]2− groups. Nature. 1969; 224 (5217): 363.
18. Zhao J, Ross N, Angel R., New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallogr B Struct Sci. 2004; 60 (3): 263–271.
19. Ohira I, Ohtani E, Sakai T, et al. Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett. 2014; 401: 12–17.
20. Arefiev AV, Shatskiy A, Podborodnikov IV, et al. Melting and subsolidus phase relations in the system K2CO3–MgCO3 at 3 GPa. High Press Res. 2018; 38 (4): 422–439.
21. Gražulis S, Chateigner D, Downs RT, et al. Crystallography Open database–an open-access collection of crystal structures. J Appl Crystallogr. 2009; 42 (4): 726–729.
22. Goryainov S., Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)⋅12H2O at high pressure. J Raman Spectrosc. 2016; 47 (8): 984–992.
23. Goryainov SV, Krylov AS, Pan Y, et al. Raman investigation of hydrostatic and nonhydrostatic compressions of OH-and F-apophyllites up to 8 GPa. J Raman Spectrosc. 2012; 43 (3): 439–447.
24. Brandenburg K, Putz H., Diamond-crystal and molecular structure visualization crystal impact. Rathausgasse. 1999; 30: 1997–2000.
25. Libowitzky E., Correlation of OH stretching frequencies and OH … O hydrogen bond lengths in minerals. Monatshefte für Chemie/Chemical Monthly. 1999; 130 (8): 1047–1059.
26. Novak A., Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct Bond. 1974; 18: 177–215.
27. Goryainov S., A model of phase transitions in double-well Morse potential: Application to hydrogen bond. Phys B. 2012; 407 (21): 4233–4237.
28. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist Cryst Mater. 2005; 220 (5–6): 567–570.
29. Perdew JP, Burke K, Ernzerhof M., Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77 (18): 3865.
30. Lutz H., Hydroxide ions in condensed materials—correlation of spectroscopic and structural data. In: Structure and bonding. Berlin: Springer-Verlag; 1995. Vol. 82. p. 85–103.
31. Li R, Jiang Z, Chen F, et al. Hydrogen bonded structure of water and aqueous solutions of sodium halides: a Raman spectroscopic study. J Mol Struct. 2004; 707 (1–3): 83–88.
32. O'shea D, Bartlett M, Young R., Compositional analysis of apatites with laser-Raman spectroscopy:(OH, F, Cl) apatites. Arch Oral Biol. 1974; 19 (11): 995–1006.
33. Liu Z, El Abedin SZ, Endres F., Raman and FTIR spectroscopic studies of 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, its mixtures with water and the solvation of zinc ions. ChemPhysChem. 2015; 16 (5): 970–977.
34. Fumagalli P, Stixrude L, Poli S, et al. The 10 Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett. 2001; 186 (2): 125–141.
35. Comodi P, Cera F, Dubrovinsky L, et al. The high-pressure behaviour of the 10 Å phase: a spectroscopic and diffractometric study up to 42 GPa. Earth Planet Sci Lett. 2006; 246 (3–4): 444–457.
36. Cynn H, Hofmeister AM., High-pressure IR spectra of lattice modes and OH vibrations in Fe-bearing wadsleyite. J Geophys Res Solid Earth. 1994; 99 (B9): 17717–17727.
37. Cynn H, Hofmeister A, Burnley P, et al. Thermodynamic properties and hydrogen speciation from vibrational spectra of dense hydrous magnesium silicates. Phys Chem Miner. 1996; 23 (6): 361–376.
38. Kleppe AK, Jephcoat AP, Ross NL., Raman spectroscopic studies of phase E to 19 GPa. Am Mineral. 2001; 86 (10): 1275–1281.
39. Hofmeister A, Cynn H, Burnley P, et al. Vibrational spectra of dense, hydrous magnesium silicates at high pressure: importance of the hydrogen bond angle. Am Mineral. 1999; 84 (3): 454–464.
40. Komatsu K, Kagi H, Okada T, et al. Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH. Am Mineral. 2005; 90 (1): 266–270.
41. Chio CH, Sharma SK, Muenow DW., Micro-Raman studies of gypsum in the temperature range between 9 and 373 K. Am Mineral. 2004; 89 (2–3): 390–395.
42. Williams Q, Jeanloz R, McMillan P., Vibrational spectrum of MgSiO3 perovskite: zero-pressure Raman and mid-infrared spectra to 27 GPa. J Geophys Res Solid Earth. 1987; 92 (B8): 8116–8128.
43. Wehinger B, Bosak A, Nazzareni S, et al. Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite). Geophys Res Lett. 2016; 43 (6): 2568–2575.
|