Цитирование: | 1. Chen, C.; Sasaki, T.; Li, R.; Wu, Z.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Uda, S.; Yoshimura, M.; Kaneda, Y. Nonlinear Optical Borate Crystals, Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGaA, 2012; 387 p.
2. Chen, C. T.; Wu, B. C.; Jiang, A. D.; You, G. M. A new Ultra-violet SHG Crystal: β-BaB2O4. Sci. Sin. B 1985, 28, 235-243
3. Chen, C. T.; Wu, Y. C.; Jiang, A. D.; Wu, B. C.; You, G.; Li, R. K.; Lin, S. J. New Nonlinear Optical Crystal LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616-621, 10.1364/JOSAB.6.000616
4. Nikolov, I.; Perlov, D.; Livneh, S.; Sanchez, E.; Czechowicz, P.; Kondilenko, V.; Loiacono, D. Growth and Morphology of Large LiB3O5Single Crystals. J. Cryst. Growth 2011, 331, 1-3, 10.1016/j.jcrysgro.2011.07.008
5. Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. New Nonlinear-optical Crystal: Cesium Lithium Borate. Appl. Phys. Lett. 1995, 67, 1818-1820, 10.1063/1.115413
6. Yuan, X.; Shen, G.; Wang, X.; Shen, D.; Wang, G.; Xu, Z. Growth and Characterization of Large CLBO Crystals. J. Cryst. Growth 2006, 293, 97-101, 10.1016/j.jcrysgro.2006.04.112
7. Appel, R.; Dyer, C. D.; Lockwood, J. N. Design of a Broadband UV-visible α-barium Borate Polarizer. Appl. Opt. 2002, 41, 2470-2480, 10.1364/AO.41.002470
8. Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.; Potaturkin, O. I.; Bekker, T. B.; Solntsev, V. P. Optical Properties of Borate Crystals in Terahertz Region. Opt. Commun. 2013, 309, 333-337, 10.1016/j.optcom.2013.08.014
9. Zhang, H.; Zhang, M.; Pan, S.; Yang, Z.; Wang, Z.; Bian, Q.; Hou, X.; Yu, H.; Zhang, F.; Wu, K.; Yang, F.; Peng, Q.; Xu, Z.; Chang, K. B.; Poeppelmeier, K. R. Na3Ba2(B3O6)2F: Next Generation of Deep-ultraviolet Birefringent Materials. Cryst. Growth Des. 2015, 15, 523-529, 10.1021/cg5016912
10. Bekker, T. B.; Vedenyapin, V. N.; Khamoyan, A. G. Birefringence of the New Fluoride Borates Ba2Na3[B3O6]2F and Ba7(BO3)4-yF2+3yin the Na, Ba, B//O, F Quaternary Reciprocal System. Mater. Res. Bull. 2017, 91, 54-58, 10.1016/j.materresbull.2017.03.024
11. Bubnova, R. S.; Filatov, S. K. High-Temperature Crystal Chemistry of Borates and Borosilicates; Nauka: St. Petersburg, Russia, 2008; 760 p.
12. Becker, P. Borate Materials in Nonlinear Optics. Adv. Mater. 1998, 10, 979-992, 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N
13. Mutailipu, M.; Zhang, M.; Wu, H.; Yang, Z.; Shen, Y.; Sun, J.; Pan, S. Ba3Mg3(BO3)3F3Polymorphs with Reversible Phase Transition and High Performances as Ultraviolet Nonlinear Optical Materials. Nat. Commun. 2018, 9, 3089, 10.1038/s41467-018-05575-w
14. Geng, W.; Zhou, X.; Ding, J.; Wang, Y. Density-Functional Theory Calculations, Luminescence Properties and Fluorescence Ratiometric Thermo-Sensitivity for a Novel Borate Based Red Phosphor: NaBaSc(BO3)2:Ce3+, Mn2+. J. Mater. Chem. C 2019, 7, 1982-1990, 10.1039/C8TC06034G
15. Jiang, D.; Han, G.; Wang, Y.; Li, H.; Yang, Z.; Pan, S. Designing Three Fluorooxoborates with a Wide Transmittance Window by Anionic Group Substitution. Inorg. Chem. 2019, 58, 3596-3600, 10.1021/acs.inorgchem.9b00197
16. Zhou, J.; Wu, H.; Yu, H.; Hu, Z.; Wu, Y. Pb10O4(BO3)3I3: A New Noncentrosymmetric Oxyborate Iodide Synthesized by the Straightforward Hydrothermal Method. Dalton Trans. 2019, 48, 14996-15001, 10.1039/C9DT02579K
17. Huang, H.; Liu, L.; Jin, S.; Yao, W.; Zhang, Y.; Chen, C. Deep-ultraviolet Nonlinear Optical Materials: Na2Be4B4O11and LiNa5Be12B12O33. J. Am. Chem. Soc. 2013, 135, 18319-18322, 10.1021/ja410543w
18. Han, S.; Mutailipu, M.; Tudi, A.; Yang, Z.; Pan, S. PbB5O7F3: A High-Performing Short-Wavelength Nonlinear Optical Material. Chem. Mater. 2020, 32, 2172-2179, 10.1021/acs.chemmater.0c00150
19. Bekker, T. B.; Rashchenko, S. V.; Solntsev, V. P.; Yelisseyev, A. P.; Kragzhda, A. A.; Bakakin, V. V.; Seryotkin, Y. V.; Kokh, A. E.; Kokh, K. A.; Kuznetsov, A. B. Growth and Optical Properties of LixNa1-xBa12(BO3)7F4Fluoride Borates with 'Anti-zeolite' Structure. Inorg. Chem. 2017, 56, 5411-5419, 10.1021/acs.inorgchem.7b00520
20. Bekker, T. B.; Rashchenko, S. V.; Seryotkin, Y. V.; Kokh, A. E.; Davydov, A. V.; Fedorov, P. P. BaO-B2O3System and its Mysterious Member Ba3B2O6. J. Am. Ceram. Soc. 2018, 101, 450-457, 10.1111/jace.15194
21. Bekker, T. B.; Solntsev, V. P.; Rashchenko, S. V.; Yelisseyev, A. P.; Davydov, A. V.; Kragzhda, A. A.; Kokh, A. E.; Kuznetsov, A. B.; Park, S.-H. Nature of the Color of Borates with 'Anti-zeolite' Structure. Inorg. Chem. 2018, 57, 2744-2751, 10.1021/acs.inorgchem.7b03134
22. Solntsev, V. P.; Bekker, T. B.; Davydov, A. V.; Yelisseyev, A. P.; Rashchenko, S. V.; Kokh, A. E.; Grigorieva, V. D.; Park, S.-H. Optical and Magnetic Properties of Cu-containing Borates with 'Anti-zeolite' Structure. J. Phys. Chem. C 2019, 123, 4469-4474, 10.1021/acs.jpcc.9b00355
23. Bekker, T.; Solntsev, V.; Yelisseyev, A.; Davydov, A.; Rashchenko, S. Crystal Chemical Design of Functional Fluoride Borates with 'Antizeolite' Structure. Cryst. Growth Des. 2020, 20, 4100-4107, 10.1021/acs.cgd.0c00368
24. Zhao, J.; Li, R. K. Two New Barium Borate Fluorides AB12(BO3)7F4(A = Li and Na). Inorg. Chem. 2014, 53, 2501-2505, 10.1021/ic4025525
25. Bekker, T. B.; Solntsev, V. P.; Yelisseyev, A. P.; Rashchenko, S. V.; Davydov, A.V.; Kragzhda, A.A.; Kuznetsov, A.B. The Dichroic Material-Fluoroborate with an 'Anti-zeolitic' Structure. Patent 2689596 RU. Published 28.05.2019, Bulletin No. 16.
26. Palacios, L.; Cabeza, A.; Bruque, S.; Garciá-Granda, S.; Aranda, M. A. G. Structure and Electrons in Mayenite Electrides. Inorg. Chem. 2008, 47, 2661-2667, 10.1021/ic7021193
27. Lavrent'ev, Y. G.; Karmanov, N. S.; Usova, L. V. Electron Probe Microanalysis of Minerals: Microanalyzer or Scanning Electron Microscope?. Russ. Geol. Geophys. 2015, 56, 1154-1161, 10.1016/j.rgg.2015.07.006
28. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775, 10.1103/PhysRevB.59.1758
29. Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-wave Basis Set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186, 10.1103/PhysRevB.54.11169
30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396-1396, 10.1103/PhysRevLett.78.1396
31. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207-8215, 10.1063/1.1564060
32. Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953
33. Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
34. Raymond, M. Electric-Field-Gradient Calculations in the Aluminum Silicates (Al2SiO5). Phys. Rev. B 1971, 3, 3692-3701, 10.1103/PhysRevB.3.3692
35. Whittaker, E. J. W. Madelung energies and site preferences in amphiboles. I. Am. Miner. 1971, 56, 980-996
36. Hobden, M. V. Optical Activity in a Non-Enantiomorphous Crystal Silver Gallium Sulphide. Nature 1967, 216, 678, 10.1038/216678a0
37. Hobden, M. V. Optical Activity in an Non-enantiomorphous Crystal of class-4: CdGa2S4. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1969, A25, 633-638, 10.1107/S0567739469001410
38. Burkov, V. I.; Kizel, V. A.; Leonyuk, N. I.; Sitnikov, N. M. Gyrotropy of Double Borates with Huntite Structure. Sov. Phys. Cryst. 1982, 27, 121-122
39. Burkov, V. I.; Kizel, V. A.; Leoniuk, N. I.; Sitnikov, N. M. Spectral and Gyroscopic Characteristics of EuAl3(BO3)4Crystals. Sov. Phys. Cryst. 1984, 29, 101-105
40. Kuzmenko, A. M.; Dziom, V.; Shuvaev, A.; Pimenov, A.; Szaller, D.; Mukhin, A. A.; Ivanov, V. Yu.; Pimenov, A. Sign Change of Polarization Rotation under Time or Space Inversion in Magnetoelectric YbAl3(BO3)4. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 99 (22), 224417, 10.1103/PhysRevB.99.224417
41. Hopfield, J. J.; Thomas, D. G. Polariton Absorption Lines. Phys. Rev. Lett. 1965, 15, 22, 10.1103/PhysRevLett.15.22
42. Laurenti, J. P.; Rustagi, K. C.; Rouzeyre, M. Optical Filters Using Coupled Light Waves in Mixed Crystals. Appl. Phys. Lett. 1976, 28, 212-213, 10.1063/1.88700
43. Bekker, T. B.; Solntsev, V. P.; Yelisseyev, A. P.; Rashchenko, S. V. Fluoride Borates with [(BO3)F]4-â†" [F4] 4-Anionic Isomorphism and X-ray Sensitivity. Cryst. Growth Des. 2016, 16, 4493-4499, 10.1021/acs.cgd.6b00615
44. Lv, X.; Yang, Y.; Liu, B.; Zhang, Y.; Wei, L.; Zhao, X.; Wang, X. Electronic Structure and Raman Spectroscopy Study of Dibarium Magnesium Orthoborate, Ba2Mg(BO3)2. Vib. Spectrosc. 2015, 80, 53-58, 10.1016/j.vibspec.2015.07.001
45. Zhao, J.; Li, R. K. Ba2(BO3)1-x(CO3)xCl1+x: A Mixed Borate and Carbonate Chloride Crystallized from High-Temperature Solution. Inorg. Chem. 2012, 51, 4568-4571, 10.1021/ic3005135
46. Sohr, G.; Clara, D.; Huppertz, H. Single-Crystal Structure Determination and Spectroscopic Characterization of KSr4(BO3)3. Z. Naturforsch., B: J. Chem. Sci. 2013, 68, 338-344, 10.5560/znb.2013-3074
47. Hybertsen, M. S.; Louie, S. G. Electron Correlation in Semiconductors and Insulators: Band Gaps and Quasiparticle Energies. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 34, 5390, 10.1103/PhysRevB.34.5390
48. Viñes, F.; Lamiel-Garciá, O.; Chul Ko, K.; Yong Lee, J.; Illas, F. Systematic Study of the Effect of HSE Functional Internal Parameters on the Electronic Structure and Band Gap of a Representative Set of Metal Oxides. J. Comput. Chem. 2017, 38, 781-789, 10.1002/jcc.24744
49. Fowler, W. B. Physics of Color Centers; Academic Press: New York, 1968; Chapters 2 and 4.
|