Инд. авторы: Туркин А.И, Чепуров А.А, Жимулев Е.И, Лин В.В., Соболев Н.В.
Заглавие: Экспериментальное моделирование образования зональных магнезиальных гранатов в условиях изменяющегося в среде кристаллизации содержания са, al и cr под воздействием водного флюида
Библ. ссылка: Туркин А.И, Чепуров А.А, Жимулев Е.И, Лин В.В., Соболев Н.В. Экспериментальное моделирование образования зональных магнезиальных гранатов в условиях изменяющегося в среде кристаллизации содержания са, al и cr под воздействием водного флюида // Геохимия. - 2021. - Т.66. - № 8. - С.731-744. - ISSN 0016-7525.
Внешние системы: DOI: 10.31857/S0016752521080094; РИНЦ: 46120191;
Реферат: rus: На многопуансонном аппарате “Барс” при P = 5 ГПа и Т = 1300°С проведена перекристаллизация природного серпентина с добавками хромита, корунда и карбоната – как источников хрома, аллюминия и кальция, соответственно. Получены характерные минеральные ассоциации гранатовых перидотитов. Микрозондовый анализ гранатов показал, что, как правило, эта фаза образует отчетливо зональные зерна, прежде всего по содержанию кальция. Установлено два типа зональности по #Ca = 100Ca/(Ca + Mg). Последовательное увеличение – от центра к краю зерна – проявляющееся в визуально однородных по цвету зернах и скачкообразное изменение – при переходе от темного к более светлым участкам зерна, главным образом расположенным вблизи межзерновых границ. Зональность, по всей видимости, является результатом изменяющегося в ходе экспериментов под воздействием существенно водного флюида (H2O/CO2 > 65) количественных соотношений Cr/Al/Ca. Сделан вывод, что соотношение содержаний именно этой триады элементов является ключевым фактором при кристаллизации специфических по составу гранатов для той или иной разновидности перидотитов.
Ключевые слова: алюминий; хром; кальций; гранат; перидотиты; высокое давление; эксперимент;
Издано: 2021
Физ. характеристика: с.731-744
Цитирование: 1. Малиновский И.Ю., Дорошев А.М., Годовиков А.А. (1974) Устойчивость гранатов серии пироп-гроссуляр-кноррингит-уваровит при 1200°С и 30 кбар. Экспериментальные исследования по минералогии (1972-1973). (Отв. ред. А.А. Годовиков, В.С. Соболев, Ред. Б.А Фурсенко). Новосибирск: СО АН СССР, ИГиГ, 73-77. 2. Матросова Е.А., Бенделиани А.А., Бобров А.В., Каргальцев А.А., Игнатьев Ю.А. (2019) Фазовые отношения при плавлении модельного пиролита (2.5, 3.0, 7.0 ГПа и 1400–1800°С) в связи с проблемой образования высокохромистых гранатов. Геохимия.64(9), 974-985. 3. Matrosova E.A., Bendeliani A.A., Bobrov A.V., Kargal’tsev A.A., Ignat’ev Y.A. (2019) Melting relations in the model pyrolite at 2.5, 3.0, 7.0 GPa and 1400–1800°C: application to the problem of the formation of high-chromium garnets. Geochem. Int.57(9), 988-999. 4. Осоргин Н.Ю., Пальянов Ю.Н., Соболев Н.В., Хохрякова И.П., Чепуров А.И., Шугурова Н.А. (1987) Включения сжиженных газов в кристаллах алмаза. ДАН СССР.293(5), 1214-1217. 5. Перчук Л.Л. (2000) Флюиды в нижней коре и верхней мантии Земли. Вестн.Моск.Ун-та, Сер. 4, Геология. (4), 25-35. 6. Похиленко Н.П., Соболев Н.В., Бойд Ф.Р., Пирсон Г.Д., Шимизу Н. (1993) Мегакристаллические пироповые перидотиты в литосфере Сибирской платформы: минералогия, геохимические особенности и проблема происхождения. Геология и геофизика.34(1), 71-84. 7. Рябчиков И.Д, Ионов Д.А., Когарко Л.Н., Коваленко В.И. (1987) Вариации химического состава мантийных перидотитов как результат различных степеней частичного плавления примитивной мантии. ДАН СССР.295(1), 185-189. 8. Соболев В.С. (1960) Условия образования месторождений алмазов. Геология и геофизика. (1), 7-22. 9. Соболев В.С., Соболев Н.В. (1967) О хроме и хромсодержащих минералах в глубинных ксенолитах кимберлитовых трубок. Геология рудных месторождений. (2), 10-16. 10. Соболев Н.В., Лаврентьев Ю.Г., Поспелова Л.Н., Соболев E.В (1969) Хромовые пиропы из алмазов Якутии. ДАН СССР. 189(1), 162-165. 11. Соболев В.Н., Тэйлор Л.А., Снайдер Г.А., Соболев Н.В., Похиленко Н.П., Харькив А.Д. (1997) Уникальный метасоматизированный перидотит из кимберлитовой трубки Мир (Якутия). Геология и геофизика.38(1), 206-215. 12. Туркин А.И., Соболев Н.В. (2009) Пироп-кноррингитовые гранаты: обзор экспериментальных данных и природных парагенезисов. Геология и геофизика.50(12), 1506-1523. 13. Чепуров А.И., Жимулев Е.И., Агафонов Л.В., Сонин В.М., Чепуров А.А., Томиленко А.А. (2013) Устойчивость ромбического и моноклинного пироксенов, оливина и граната в кимберлитовой магме. Геология и геофизика.54(4), 533-544. 14. Чепуров А.И., Томиленко А.А., Жимулев Е.И., Сонин В.М., Чепуров А.А., Ковязин С.В., Тимина Т.Ю., Сурков Н.В. (2012) Консервация водного флюида в минералах и межзерновом пространстве при высоких Р-Т параметрах в процессе разложения антигорита. Геология и геофизика.53(3), 305-320. 15. Чепуров А.И., Федоров И.И., Сонин В.М. (1998) Экспериментальные исследования образования алмаза при высоких РТ-параметрах (приложение к модели природного алмазообразования). Геология и геофизика.39(2), 243-244. 16. Чепуров А.И., Томиленко А.А., Шебанин А.П., Соболев Н.В. (1994) Флюидные включения в алмазах. ДАН.336(5), 662-665. 17. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S. (2013) Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos.160–161(1), 201-215. 18. Agashev, A.M., Pokhilenko, N.P., Takazawa, E., McDonald, J.A., Vavilov, M.A., Watanabe, T., Sobolev, N.V. (2008) Primary melting sequence of a deep (>250 km) lithospheric mantle as recorded in the geochemistry of kimberlite–carbonatite assemblages, Snap Lake dyke system, Canada. Chem. Geol. 255(3–4), 317-328. 19. Akella J., Kennedy G.C. (1971) Melting of gold, silver, and cooper – proposal for a new high-pressure calibration scale. J. Geophys. Res.26(20), 4969-4977. 20. Anderson Don L. Theory of the Earth. (1989) Blackwell scientific publications, 366 p. 21. Arndt N.T., Coltice N., Helmstaedt H., Gregoire M. (2009) Origin of Archean subcontinental lithospheric mantle: Some petrological constraints. Lithos.109(1–2), 61-67. 22. Bell D.R., Greґgoire M., Grove T.L., Chatterjee N., Carlson R.W., Buseck P.R. (2005) Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib Mineral Petrol.150(3), 251-267. 23. Berkesi M., Guzmics T., Szabó C., Dubessy J., Bodnar R.J., Hidas K., Ratter K. (2012) The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth Planet. Sci. Lett.331–332, 8-20. 24. Boyd F.R., D.G. Pearson, P.H. Nixon, S.A. (1993) Mertzman Low-calcium garnet harzburgites from southern Africa: their relations to craton structure and diamond crystallization. Contrib. Mineral. Petrol.113(3), 352-366. 25. Boyd S.R., Pillinger C.T., Milledge H.J., Mendelssohn M.J., Seal M. (1992) C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2–H2O rich fluids in lithospheric mantle. Earth Planet Sci Lett.109(3–4), 633-644. 26. Boyd F.R., Mertzman, S.A., (1987). Composition and structure of the Kaapvaal lithosphere, southern Africa. Magmatic Processes: Physicochemical Principles (Ed. Mysen B.O.) The Geochemical Society Special Publications, University Park, PA, 13-24. 27. Brey G.P., Girnis A.V., Bulatov V.K., Hofer H.E., Gerdes A., Woodland A.B. (2015) Reduced sediment melting at 7.5–12 GPa: phase relations, geochemical signals and diamond nucleation. Contrib. Mineral. Petrol.170(2), 18. 28. Brey G.P., Green D.H. (1976) Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the earth’s upper mantle. Contrib. Mineral. Petrol.55(2), 217-230. 29. Bureau H., Frost D.J., Bolfan-Casanova N., Leroy C., Esteve I., Cordier P (2016). Diamond growth in mantle fluids. Lithos.265(1), 4-15. 30. Chepurov A.A., Dereppe J.M., Turkin A.I., Lin V.V. (2018) From subcalcic pyropes to uvarovites: experimental crystallization of Cr-rich garnets in ultramafic systems with presence of Ca-bearing hydrous fluid. N. Jb. Miner. Abh.195(1), 65-78. 31. Chepurov A.A., Turkin A.I., Dereppe J.M. (2016) Interaction of serpentine and chromite as a possible formation mechanism of subcalcic chromium garnet in the upper mantle: an experimental study. Eur. J. Mineral.28(2), 329-336. 32. Dawson J.B., Stephens W.E. (1975) Statistical classification of garnets from kimberlite and associated xenoliths. J. Geol.83(5), 589-607. 33. Decker D.L., Basett W.A., Merrill L., Hall H.T., Barnett J.D. (1972) High-pressure calibration. A critical review. Physical and Chemical Reference Data.1(3), 773-836. 34. Dvir O., Pettke T., Fumagalli P., Kessel R. (2011) Fluids in the peridotite–water system up to 6 GPa and 800 C: new experimental constrains on dehydration reactions. Contrib. Mineral. Petrol.161(6), 829-844. 35. Eggler D.H. (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints. Mantle metasomatism. London: Academic Press., 21-41. 36. Eggler D.H. (1987) Discussion of recent papers on carbonated peridotite, bearing on mantle metasomatism and magmatism: an alternative. Earth Planet. Sci. Lett.82(3–4), 398-400. 37. Eggler D.H., Baker D.R. (1982) Reduced volatiles in the system C–O–H; implications to mantle melting, fluid formation, and diamond genesis. In: High Pressure Research in Geophysics12. (Eds. Akimoto S., Manghnani M.H.) Tokyo: Center for Academic Publications Japan, 237-250. 38. Fiala J. (1965) Pyrope of some garnet peridotites of the Czech massif. Krystalinikum.3, 55-74. 39. Green D.H. (1990) The role of oxidation-reduction and C-H-O fluids in determining melting conditions and magma compositions in the upper mantle. Proc. Indian Acad. Sci. (Earth Planet. Sci.).99(1), 153-165. 40. Griffin W. L., Fisher N.I., Friedman J.H., O'Reilly S.Y., Ryan C.G. (2002) Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space. Geochemistry Geophysics Geosystems (G3).3(12), 1073. 41. Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O’Reilly S.Y. (1999b) Cr-pyrope garnets in the lithospheric mantle. 1. Compositional systematics and relations to tectonic setting. J. Petrol.40(5), 679-704. 42. Griffin W.L., Shee S.R., Ryan C.G., Win T.T., Wyatt B.A. (1999a) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib. Mineral. Petrol.134(2/3), 232-250. 43. Griffin W.L., O’Reilly S.Y., Ryan C.G., Gaul O., Ionov D. (1998) Secular variation in the composition of subcontinental lithospheric mantle. In Structure and Evolution of the Australian Continent, Geodyn. Ser.26 (Eds. Braun D., Dooley J.C., Goleby B.R., van der Hilst R.D., Klootwijk C.T.). AGU, Washington, D.C., 1-26. 44. Griffin W.L., O’Reilly S.Y., Ryan C.G. (1999c). The composition and origin of subcontinental lithospheric mantle. In: Fei Y., Bertka C.M., Mysen B.O. (eds) Mantle Petrology: Field Observations and High Pressure Experimentation: a Tribute to Francis R. (Joe) Boyd. Geochemical Society, Special Publications. 6, 13-45. 45. Grütter H.S., Gurney J.J., Menzies A.H., Winter F. (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos.77(1–4), 841-857. 46. Grütter H.S., Latti D., Menzies A. (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J. Petrol.47(4), 801-820. 47. Gurney J.J. (1984) A correlation between garnets and diamonds in kimberlites In Kimberlite occurrence and origin: a basis for conceptual models in exploration. (Eds. Glover J.E. and Harris P.G.). University of Western Australia, Geology Department and Extension Service, publication N8, 143-166. 48. Gurney J.J., Helmstaedt H.H., Richardson S.H., Shirey S.B. (2010) Diamonds through Time. Econom. Geol.105(3), 689-712. 49. Harte B., Winterburn P.A., Gurney J.J. (1987) Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In Mantle metasomatism. (Eds. Menzies, M.A., Hawkesworth, C.J.). London: Academic Press, 145-220. 50. Hill P.J.A., Kopylova M., Russell J.K., Cookenboo H. (2015) Mineralogical controls on garnet composition in the cratonic mantle. Contrib. Mineral. Petrol.169(2), 13. 51. Ivanic T.J., Harte B., Gurney J.J. (2012) Metamorphic re-equilibration and metasomatism of highly chromian, garnet-rich peridotitic xenoliths from South African kimberlites. Contrib. Mineral. Petrol.164(3), 505-520. 52. Kesson S.E., Ringwood A.E. (1989a) Slab – mantle interactions 1. Sheared and refertilised garnet peridotite xenoliths – samples of Wadati-Benioff zones? Chem. Geol.78(2), 83-96. 53. Kesson S.E., Ringwood A.E. (1989b) Slab-mantle interactions. 2. The formation of diamonds. Chem. Geol.78(2), 97-118. 54. Kjarsgaard B.A., Januszczak N., Stiefenhofer J. (2019) Diamond Exploration and Resource Evaluation of Kimberlites. Elements.15(6), 411-416. 55. Klein-BenDavid O., Pearson D.G., Nowell G.M., Ottley C., McNeill J.C.R., Cartigny P. (2004) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet. Sci. Lett.289(1–2), 123-133. 56. Klein BenDavid O., Izraeli E.S., Hauri E., Navon O. (2004) Mantle fluid evolution – a tale of one diamond. Lithos.77(1–4), 243-253. 57. Klein-BenDavid O., Pearson D.G. (2009) Origins of subcalcic garnets and their relation to diamond forming fluids – Case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe). Geochim. Cosmochim. Acta.73(3), 837-855. 58. Kopylova M.G., Nowell G.M., Pearson D.G., Markovic G. (2009) Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos.112(S1), 284-295. 59. Kopylova M., Hill P.J.A., Russell J.K., Cookenboo H. (2016) Lherzolitic versus harzburgitic garnet trends: sampling of extended depth versus extended composition. Reply to the comment by Ivanic et al., 2015. Contrib. Mineral. Petrol.171(2), 19. 60. Kushiro I., SyonoY., Akimoto S. (1968) Melting of a Peridotite Nodule at High Pressures and High Water Pressures. J. Geophys. Res.73(1B), 6023-6029. 61. Litasov K.D., Ohtani E. (2007) Effect of water on the phase relations in Earth’s mantle and deep water cycle. Geological Society of America, Special Paper, 421. 62. Malinovsky I.Yu., Doroshev A.M. (1977) Evaluation of P-T conditions of diamond formation with reference to chrome-bearing garnet stability. Ext. Abstr., 2nd Int. Kimb. Conf., Santa Fe, 1977, N.M., unpaginated. 63. Malkovets V.G., Griffin W.L., O’Reilly S.Y., Wood B.J. (2007) Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology.35(4), 339-342. 64. Menzies M.A., Rogers N., Tindle A., Hawkesworth C.J. (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenospherelithosphere interaction. In Mantle Metasomatism. (Eds. Menzies M.A., Hawkesworth C.J.). London: Academic Press, 313-361. 65. Mibe K., Fujii T., Yasuda A. (2002) Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta.66(12), 2273-2285. 66. Mitchell A.L., G.A. Gaetani, J.A. O'Leary, E.H. Hauri H2O solubility in basalt at upper mantle conditions (2017). Contrib. Mineral. Petrol.172(10), 85. 67. Nemeth B., Torok K., Kovacs I., Szabo Cs., Abart R., Degi J., Mihaly J., Nemeth Cs. (2015) Melting, fluid migration and fluid-rock interactions in the lower crust beneath the Bakony-Balaton Highland volcanic field: a silicate melt and fluid inclusion study. Mineral. Petrol.109(2), 217-234. 68. Newton R.C., Manning C.E. (2000) Quartz solubility in H2O–NaCl and H2O–CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900°C. Geochim. Cosmochim. Acta.64(17), 2993-3005. 69. O’Reilly S.Y., Griffin W.L. (2006) Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophysics.416(1–4), 289-309. 70. Pearson D.G., Wittig N. (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geological Society.165(5), 895-914. 71. Pearson D.G., Shirey S.B., Carlson R.W., Boyd F.R., Pokhilenko N.P., Shimizu N. (1995) Re–Os, Sm–Nd, and Rb–Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim. Cosmochim. Acta.59(5), 959-977. 72. Schulze D.J. (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos.71(2–4), 195-213. 73. Shirey S.B., Cartigny P., Frost D.J., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. (2013) Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem.75(1), 355-421. 74. Shu Q., Brey G.P. (2015) Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett.418, 27-39. 75. Simon S.C., Carlson R.W., Pearson D.G., Davies G.R. (2007) The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle. J. Petrol.48(3), 589-625. 76. Simon N.S., Irvine G.J., Davies G.R., Pearson D.G., Carlson R.W. (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos.71(2–4), 289-322. 77. Sobolev N.V., Lavrent’ev Yu.G., Pokhilenko N.P., Usova L.V. (1973) Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Mineral. Petrol.40(1), 39-52. 78. Sobolev N.V., Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Reutsky V.N. (2016) Polycrystalline diamond aggregates from the Mir kimberlite pipe, Yakutia: Evidence for mantle metasomatism. Lithos.265, 257-266. 79. Sobolev N.V., Tomilenko A.A., Bul’bak T.A., Logvinova A.M. (2019a) Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia. Engineering.5(3), 471-478. 80. Sobolev N.V., Logvinova A.M., Tomilenko A.A., Wirth R., Bul’bak T.A., Luk’yanova L.I., Fedorova E.N., Reutsky V.N., Efimova E.S. (2019b) Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta.266, 197-219. 81. Stachel T., Harris J.W. (2008) The origin of cratonic diamonds – Constraints from mineral inclusions. Ore Geology Reviews. 34(1–2), 5-32. 82. Stachel T., Harris J.W. (1997a) Syngenetic inclusions in diamond from the Birim field (Ghana) – a deep peridotitic profile with a history of depletion and re-enrichment. Contrib. Mineral. Petrol.127(2/3), 336-352. 83. Stachel T., Harris J.W. (1997b) Diamond precipitation and mantle metasomatism – evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib. Mineral. Petrol.129(2–3), 143-154. 84. Stachel T., Viljoen K.S., Brey G.P., Harris J.W. (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett.159(1–2), 1-12. 85. Tiraboschi C., Tumiati S., Sverjensky D., Pettke T., Ulmer P., Poli S. (2018) Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + + enstatite and magnesite + enstatite Contrib. Mineral. Petrol.173(1), 2. 86. Tonkov E.Yu., Ponyatovsky E.G. (2004) Phase transformations of elements under high pressure, in: (Eds. Fridlyander J.N., Eskin D.G.). CRC Press, 392 p. 87. Turkin A.I. (2003/2004) Lead selenide as a continuous internal indicator of pressure in solid-media cells of high-pressure apparatus in the range of 4–6.8 GPa. High Temperatures – High Pressures.35/36(3), 371-376. 88. Ulmer P., Trommsdorff V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science.268(5212), 858-861. 89. Walter M.J. (2003) Melt Extraction and Compositional Variability in Mantle Lithosphere. In Treatise on Geochemistry: The Mantle and Core.2 (Eds. Carlson R.W. Executive Eds. Holland H.D., Turekian K.K.). Amsterdam: Elsevier, 363-394. 90. Watson E.B., Wark D.A. (1997) Diffusion of dissolved SiO2 in H2O at 1 GPa, with implications for mass transport in the crust and upper mantle. Contrib. Mineral. Petrol.130(1), 66-80. 91. White W.M. (2013) Geochemistry. First Edition. Oxford: Wiley-Blackwell, 660 p. 92. Wyllie P.J., Ryabchikov I.D. (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J. Petrol.41(7), 1195-1206.