Инд. авторы: Рахимов И.Р., Вишневский А.В., Савельев Д.Е., Салихов Д.Н., Владимиров А.Г.
Заглавие: Полигенная (магматогенно-гидротермальная) сульфидно-платинометальная минерализация худолазовского комплекса, южный урал
Библ. ссылка: Рахимов И.Р., Вишневский А.В., Савельев Д.Е., Салихов Д.Н., Владимиров А.Г. Полигенная (магматогенно-гидротермальная) сульфидно-платинометальная минерализация худолазовского комплекса, южный урал // Геология рудных месторождений. - 2021. - Т.63. - № 4. - С.354-381. - ISSN 0016-7770.
Внешние системы: DOI: 10.31857/S0016777021040067; РИНЦ: 46370674;
Реферат: rus: Впервые с позиции магматизма и последующего гидротермально-метасоматического изменения охарактеризованы сульфидные и платинометальные минеральные ассоциации пород рудоносных интрузий худолазовского комплекса. Выделено 4 типа ассоциаций: 1) пентландит-халькопирит-пирротиновая в форме каплевидных и интерстициальных вкраплений с включениями сперрилита, мончеита, майчнерита, меренскиита, фрудита; 2) сложные амeбовидные вкрапления состава “пирит ± пирротин–халькопирит–виоларит ± пентландит” с включениями Sb-майчнерита, садбериита, боровскита; 3) новообразованные прожилковидные пирит-халькопиритовые вкрапления в интенсивно метасоматизированных породах; 4) повторно образованные идиоморфные пиритовые вкрапления в метасоматитах вдоль зон внедрения даек долеритов. Формирование этих сульфидно-платинометальных ассоциаций происходило в 3 стадии: 1) магматическую и позднемагматическую (тип 1), 2) гидротермальную – раннюю среднетемпературную и позднюю низкотемпературную (тип 2, тип 3), 3) повторную гидротермальную – низко-среднетемпературную (тип 4). Показано, что кристаллизация сульфидных минералов происходила в широком интервале температур (около 1000–200°C). Минералы элементов платиновой группы выделялись на позднемагматической стадии при остывании высоко фракционированного сульфидного или несмесимого халькогенидного расплава и при распаде сульфидных твeрдых растворов (Т ~ 650–300°C). На ранней гидротермальной стадии (Т ~ 300–250°C) пирротин замещался пиритом, пентландит – виоларитом, при этом значительная часть Ni и Co из первичных сульфидов наследовалась вторичными. Первичный халькопирит в основном замещался силикатами (хлоритом, амфиболом и др.). Предполагается, что сурьмянистые минералы Pd (в т.ч. высокосурьмянистый майчнерит с Sb до 0.46 ф.е.) могли кристаллизоваться из обогащeнного Sb гидротермального флюида. Дополнительным источником сурьмы во флюиде могли служить вмещающие породы. На поздней гидротермальной стадии (Т < 200°C) произошло значительное растворение первичных сульфидных и платинометальных фаз с переотложением в верхних частях массивов и во вмещающих породах. Повторный гидротермальный процесс (Т ≤ 200°C) был связан с внедрением даек улугуртауского комплекса и новым переотложением сульфидов вдоль зон воздействия флюидов.
Ключевые слова: майчнерит; платинометальная минерализация; гидротермальный флюид; сульфидный расплав; базит-ультрабазитовый магматизм; Худолазовский комплекс;
Издано: 2021
Физ. характеристика: с.354-381
Цитирование: 1. Маракушев А.А. Термодинамическая основа образования парагенезисов химических элементов в процессах глубинного минералообразования // Очерки физико-химической петрологии. 1975. Вып. 5. С. 121-125. 2. Маслов В.А., Артюшкова О.В. Стратиграфия и корреляция девонских отложений Магнитогорской мегазоны Южного Урала. Уфа: ДизайнПолиграфСервис, 2010. 288 с. 3. Рахимов И.Р. Геология, петрология и рудоносность позднедевонско-карбонового интрузивного магматизма Западно-Магнитогорской зоны Южного Урала. Дисс. … канд. геол.-мин. наук. Уфа, 2017. 181 с. 4. Рахимов И.Р. Минералогия и главные аспекты петрологии массива Малютка худолазовского комплекса (Южный Урал) // Вестник геонаук. 2020. № 1. С. 8–18. 5. Рахимов И.Р., Холоднов В.В. Акцессорный апатит из метасоматизированных пород рудоносных и безрудных массивов худолазовского комплекса: особенности морфологии и химического состава // Геология. Известия отделения наук о Земле и природных ресурсов АН РБ. 2019. № 26. С. 29–36. 6. Рахимов И.Р., Вишневский А.В., Владимиров А.Г., Савельев Д.Е., Пучков В.Н., Салихов Д.Н. Первые находки минералов платины и палладия в сульфидных рудах худолазовского интрузивного комплекса (Южный Урал) // ДАН. № 5. Т. 479. 2018. С. 542-545. 7. Рахимов И.Р., Анкушева Н.Н., Холоднов В.В. Co–Pd–Ag и Th-REE минерализация вмещающих пород экзоконтактовой зоны массива Ташлы-Тау худолазовского комплекса (Южный Урал): условия образования и источники вещества // Изв. Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 8. С. 77–91. 8. Салихов Д.Н., Пшеничный Г.Н. Магматизм и оруденение зоны ранней консолидации Магнитогорской эвгеосинклинали. Уфа: БФАН СССР, 1984. 112 с. 9. Спиридонов Э.М., Кулагов Э.А., Серова А.А., Куликова И.М., Коротаева Н.Н., Середа Е.В., Тушенцова И.Н., Беляков С.Н., Жуков Н.Н. Генетическая минералогия Pd, Pt, Au, Ag, Rh в норильских сульфидных рудах // Геология руд. месторождений. 2015. Т. 57. № 5. С. 445–476. 10. Толстых Н.Д., Орсоев Д.А., Кривенко А.П., Изох А.Э. Благороднометалльная минерализация в расслоенных ультрабазит-базитовых массивах юга Cибирской платформы. Новосибирск: Параллель, 2008. 194 с. 11. Холоднов В.В., Бушляков И.Н. Галогены в эндогенном рудообразовании. Екатеринбург: УрО РАН, 2002. 392 с. 12. Arpalahti A., Lundström M. The leaching behavior of minerals from a pyrrhotite-rich pentlandite ore during heap leaching // Miner. Eng. 2018. V. 119. P. 116–125. https://doi.org/10.1016/j.mineng.2018.01.025 13. Ballhaus C., Ulmer P. Platinum-group elements in the Merensky Reef: II. Experimental solubilities of platinum and palladium in Fe1 – xS from 950 to 450°C under controlled fS2 and fH2 // Geochim. Cosmochim. Acta. 1995. V. 59. № 23. P. 4881–4888. 14. Barnes S.J., Liu W. Pt and Pd mobility in hydrothermal fluids: Evidence from komatiites and from thermodynamic modelling // Ore Geol. Rev. 2012. V. 44. P. 49–58. https://doi.org/10.1016/j.oregeorev.2011.08.004 15. Cabri L.J., Harris D.C. Michenerite (PdBiTe) redefined and froodite (PdBi2) confirmed from the Sudbury area // Can. Mineral. 1973. V. 11. P. 903–912. 16. Cabri L.J., LaFlamme G.J.H. The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area, Ontario // Econ. Geol. 1976. V. 71. P. 1159–1195. 17. Cafagna F., Jugo P.J. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650°C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE // Geochim. Cosmochim. Acta. 2016. V. 178. №. 1. P. 233–258. https://doi.org/10.1016/j.gca.2015.12.035 18. Campos-Alvarez N.O., Samson I.M., Fryer B.J. The roles of magmatic and hydrothermal processes in PGE mineralization, Ferguson Lake deposit, Nunavut, Canada // Miner. Deposita. 2012. V. 47. №. 4. P. 441–465. 19. Chelle-Michou C., Chiaradia M. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits // Contrib. Mineral. Petrol. 2017. V. 172. № 11. P. 105. https://doi.org/10.1007/s00410-017-1417-2 20. Childs J. D., Hall S. R. The crystal of michenerite, PdBiTe* // Can. Mineral. 1973. V. 12. P. 61–65. 21. Crerar D.A., Susak N.J., Borcsik M., Schwartz S. Solubility of the buffer assemblage pyrite + pyrrhotite + magnetite in NaCl solutions from 200 to 350°C // Geochim. Cosmochim. Acta. 1978. V. 42. № 9. P. 1427–1437. 22. Dare S.A.S., Barnes S.-J., Prichard H.M. The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite // Miner. Deposita. 2010. V. 45. P. 765–793. https://doi.org/10.1007/s00126-010-0295-6 23. Duran C.J., 1 Barnes S.-J., Corkery J.T. Geology, petrography, geochemistry, and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, Western Ontario, Canada // Miner. Deposita. 2016. V. 51. P. 509–532. https://doi.org/10.1007/s00126-015-0622-z 24. Durazzo A., Taylor L.A. Exsolution in the mss-pentlandite system: Textural and genetic implications for Ni-sulfide ores // Miner. Deposita. 1982. V. 17. P. 313–332. 25. Etschmann B., Pring A., Putnis A., Grguric B.A., Studer A. A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8 from the monosulfide solid solution (Fe, Ni)S // Am. Mineral. 2004. V. 89. № 1. P. 39–50. https://doi.org/10.2138/am-2004-0106 26. Garuti G., Fiandri P., Rossi A. Sulfide composition and phase relations in the Fe–Ni–Cu ore deposits of the Ivrea-Verbano basic complex (western Alps, Italy) // Miner. Deposita. 1986. V. 21. P. 22–34. 27. Haluzová E., Ackerman L., Pašava J., Jonášová Š., Svojtka M., Hrstka T., Veselovský F. Geochronology and characteristics of Ni–Cu–(PGE) mineralization at Rožany, Lusatian Granitoid Complex, Czech Republic // J. of Geosciences. 2015. V. 60. P. 219–236. https://doi.org/10.3190/jgeosci.204 28. Helmy H. M., Ballhaus C., Berndt J., Bockrath C., Wohlgemuth-Ueberwasser C. Formation of Pt, Pd and Ni tellurides: experiments in sulfide–telluride systems // Contrib. Mineral. Petrol. 2007. V. 153. P. 577–591. 29. Helmy H.M., Ballhaus C., Wohlgemuth-Ueberwasser C., Fonseca R.O.C., Laurenz V. Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt –application to magmatic sulfide deposits // Geochim. Cosmochim. Acta. 2010. V. 74. P. 6174–6179. 30. Helmy H.M., Fonseca R. O. C. The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700°C and the role of Se in platinum-group elements fractionation in sulfide melts // Geochim. Cosmochim. Acta. 2017. V. 216. № 1. P. 141–152. https://doi.org/10.1016/j.gca.2017.05.010 31. Holwell D.A., Zeinab A., Warda L. A., Smith D.J., Graham S.D., McDonald I., Smith J.W. Low temperature alteration of magmatic Ni–Cu–PGE sulfides as a source for hydrothermal Ni and PGE ores: A quantitative approach using automated mineralogy // Ore Geol. Rev. 2017. V. 91. P. 718–740. https://doi.org/10.1016/j.oregeorev.2017.08.025 32. Ivanyuk G.Yu., Pakhomovsky Ya.A., Panikorovskii T.L., Mikhailova J.A., Kalashnikov A.O., Bazai A.V., Yakovenchuk V.N., Konopleva N.G., Goryainov P.M. Three-D mineralogical mapping of the Kovdor phoscorite-carbonatite complex, NW Russia: II. Sulfides // Minerals. 2018. V. 8. № 7. P. 277. https://doi.org/10.3390/min8070292 33. Junge M., Wirth R., Oberthür T., Melcher F., Schreiber A. Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa // Miner. Deposita. 2015. V. 50. № 1. P. 41–54. 34. Kullerud G. Monoclinic pyrrhotite // Bull. Geol. Soc. Finl. 1986. V. 58: P. 1. P. 293-305. 35. Liu Y., Brenan J. Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2fS2 conditions // Geochim. Cosmochim. Acta. 2015. V. 159. P. 139–161. https://doi.org/10.1016/j.gca.2015.03.021 36. Liu W., Migdisov A., Williams-Jones A. The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions: results of UV–visible spectroscopic experiments // Geochim. Cosmochim. Acta. 2012. № 94. P. 276–290. 37. Lu Z.Y., Jeffrey M.I., Zhu Y., Lawson F. Studies of pentlandite leaching in mixed oxygenatedacidic chloride-sulfate solutions // Hydrometallurgy. 2000. V. 56. P. 63–74. 38. Misra K.C., Fleet M.E. Chemical composition and stability of violarite // Econ. Geol. 1974. V. 69. P. 391–403. 39. Morimoto N., Gyobu A., Mukaiyama H., Izawa E. Crystallography and stability of pyrrhotites // Econ. Geol. 1975. V. 70. № 4. P. 824–833. 40. Mountain B.W. Wood S.A. Chemical controls on the solubility, transport, and deposition of platinum and palladium in hydrothermal solutions: A thermodynamic approach // Econ. Geol. 1988. V. 83. P. 492–510. 41. Naldrett A.J. From the mantle to the bank: the life of a Ni–Cu-(PGE) sulfide deposit // S. Afr. J Geol. 2010. V. 113. № 1. P. 1–32. 42. Nickel E.H., Ross J.R., Thornber M.R. The supergene alteration of pyrrhotite-pentlandite ore at Kambalda, Western Australia // Econ. Geol. 1974. V. 69. P. 93–107. 43. Nozaki H., Onoda M., Kosuda K. Crystal structures and galvanomagnetic properties of epitaxial films in a Ni–S system. In: Progress in solid state chemistry research. Buckley R.W. (Ed.). Nova Science Publishers, Inc. 2007. P. 239–284. 44. Ohmoto H., Rye R.O. Isotopes of sulfur and carbon. In: Barnes H.L. (Ed.). Geochemistry of Hydrothermal Ore Deposits, 2nd ed. Wiley, New York, 1979. P. 509–567. 45. Peng G., Luhr J.F., McGee J.J. Factors controlling sulfur concentrations in volcanic apatite // Am. Mineral. 1997. V. 82. P. 1210–1224. 46. Qian G., Xia F., Brugger J., Skinner W.S., Bei J., Chen G., Pring A. Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220°C: An experimental study of reaction textures and mechanisms // Am. Mineral. 2011. V. 96. P. 1878–1893. 47. Pan L.-C., Hu R.-Z., Wang X.-S., Bi X.-W., Zhu J.-J., Li C. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China // Lithos. 2016. V. 254–255. P. 118–130. https://doi.org/10.1016/j.lithos.2016.03.010 48. Pašava J., Vavřín I., Frýda J., Janoušek V., Jelínek E. Geochemistry and mineralogy of Platinum-group elements in the Ransko gabbro–peridotite massif, Bohemian Massif (Czech Republic) // Miner. Deposita. 2003. V. 38. P. 298–311. https://doi.org/10.1007/s00126-002-0343-y 49. Sadove G., Konecke B.A., Fiege A., Simon A.C. Structurally bound S2−, S1−, S4+, S6+ in terrestrial apatite: The redox evolution of hydrothermal fluids at the Phillips mine, New York, USA // Ore Geol. Rev. 2019. V. 107. P. 1084–1096. https://doi.org/10.1016/j.oregeorev.2019.03.033 50. Smith J.W., Holwell D.A., McDonald I., Boyce A.J. The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: a cautionary case study from the northern Bushveld Complex // Ore Geol. Rev. 2016. № 73. P. 148–174. 51. Suárez S., Prichard H.M., Velasco F., Fisher P.C., McDonald I. Alteration of platinum-group minerals and dispersion of platinum-group elements during progressive weathering of the Aguablanca Ni–Cu deposit, SW Spain // Miner. Deposita. 2010. V. 45. P. 331–350. https://doi.org/10.1007/s00126-009-0275-x 52. Sugaki A., Kitakaze A. High form of pentlandite and its thermal stability // Am. Mineral. 1998. V. 83. № 1. P. 133–140. 53. Tenailleau C., Pring A., Etschmann B., Brugger J., Grguric B., Putnis A. Transformation of pentlandite to violarite under mild hydrothermal conditions // Am. Mineral. 2006. V. 91. P. 706–709. https://doi.org/10.2138/am.2006.2131 54. Tuba G., Molnar F., Ames D. E., Péntek A., Watkinson D.H., Jones P.C. Multi-stage hydrothermal processes involved in “low-sulfide” Cu(–Ni)–PGE mineralization in the footwall of the Sudbury Igneous Complex (Canada): Amy Lake PGE zone, East Range // Miner. Deposita. 2014. V. 49. P. 7–47. https://doi.org/10.1007/s00126-013-0468-1 55. Valsami-Jones E., Ragnarsdottir K.V., Putnis A., Bosbach D., Kemp A.J., Cressey G. The dissolution of apatite in the presence of aqueous metal cations at pH 2–7 // Chem. Geol. 1998. V. 151. P. 215–233. 56. Wood S.A., Mountain B.W. Thermodynamic constraints on the solubility of platinum and palladium in hydrothermal solutions: reassessment of hydroxide, bisulfide, and ammonia complexing // Econ. Geol. 1989. V. 84. P. 2020–2028. 57. Wu C.-Z., Xie S.-W., Gu L.-X., Samson I.M., Yang T., Lei R.-X., Zhu Z.-Y., Dang B. Shear zone-controlled post-magmatic ore formation in the Huangshandong Ni–Cu sulfide deposit, NW China // Ore Geol. Rev. 2018. V. 100. P. 545–560. https://doi.org/10.1016/j.oregeorev.2017.02.015 58. Xia F., Brugger J., Chen G., Ngothai Y., O’Neill B., Putnis A., Pring A. Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite // Geochim. Cosmochim. Acta. 2009. V. 73. P. 1945–1969. https://doi.org/10.1016/j.gca.2009.01.007 59. Zhu W.-G., Zhong H., Hu R.-Z., Liu B.-G., He D.-F., Song X.-Y., Deng H.-L. Platinum-group minerals and tellurides from the PGE-bearing Xinjie layered intrusion in the Emeishan Large Igneous Province, SW China // Mineral. Petrol. 2010. V. 98. P. 167–180. https://doi.org/10.1007/s00710-009-0077-y