Инд. авторы: Redina A.A., Nikolenko A.M., Doroshkevich A.G., Prokopyev I.R, Wohlgemuth-Ueberwasser C., Vladykin N.V.
Заглавие: Conditions for the crystallization of fluorite in the Mushgai-Khudag complex (Southern Mongolia): Evidence from trace element geochemistry and fluid inclusions
Библ. ссылка: Redina A.A., Nikolenko A.M., Doroshkevich A.G., Prokopyev I.R, Wohlgemuth-Ueberwasser C., Vladykin N.V. Conditions for the crystallization of fluorite in the Mushgai-Khudag complex (Southern Mongolia): Evidence from trace element geochemistry and fluid inclusions // Chemie der Erde - Geochemistry. - 2020. - Vol.80. - Iss. 4. - Art.125666. - ISSN 0009-2819. - EISSN 1611-5864.
Внешние системы: DOI: 10.1016/j.chemer.2020.125666; РИНЦ: 45503201; WoS: 000617623200010;
Реферат: eng: The Mushgai-Khudag complex is part of the Late Mesozoic Central Asian carbonatite province. Fluorite mineralization is manifested throughout the province, including the Mushgai-Khudag complex. We have investigated the geochemical features and fluid inclusions of fluorites from different types of fluorite-bearing rocks. Fluorite from quartz-fluorite rocks has rare earth element (REE) concentrations in the range of 10500-144300 ppm and the highest light REE contents, with (La/Yb)(N) = 56-960. Fluorite from the fluorite-apatite-celestine rocks has slightly lower REE enrichment, especially light REE content, with concentrations of 200-5900 ppm and (La/Yb)(N) = 18-204. Fluorite from the fluorite-calcite rocks is characterized by REE contents of 22-1100 ppm and a variable (La/Yb)(N) of 0.6-59. These variations in the fluorite REE composition from different types of rocks were probably caused by the fact that at elevated temperatures, fluorine-containing light REE complexes are more stable than fluorine-containing heavy REE complexes. The progressive enrichment of medium and heavy REEs in the latter fluorite is related to fluid evolution. The homogenization temperature and salinity values of fluid inclusions in the Mushgai-Khudag fluorites vary between 550 and 185 degrees C and from rather high to 2 wt.%, respectively. The parental fluids of the fluorite-bearing rocks evolved from quartz-fluorite rocks to fluorite-apatite-celestine rocks to fluorite-calcite rocks. The key component was changed from sulfate to carbonate-chloride along with the high to medium temperature decrease (similar to 500-245 degrees C).
Ключевые слова: Fluid inclusion study; Carbonatite-alkaline magmatism; REE fluorite; Fluorite geochemistry; Central Asian orogenic belt;
Издано: 2020
Физ. характеристика: 125666
Цитирование: 1. Andrade, F., Möller, P., Lüders, V., Dulski, P., Gilg, H., Hydrothermal rare earth elements mineralization in the Barra do Itapirapu∼ a carbonatite, southern Brazil: behaviour of selected trace elements and stable isotopes (C, O). Chem. Geol. 155 (1999), 91–113. 2. Andreeva, I.A., Kovalenko, V.I., Magma compositions and genesis of the rocks of the Mushugai-Khuduk carbonatite-bearing alkaline complex (southern Mongolia): evidence from melt inclusions. Periodico di Mineralogia 72 (2003), 95–105. 3. Baatar, M., Ochir, G., Kynicky, J., Iizumi, S., Comin-Chiaramonti, P., Some notes on the Lugiin Gol, Mushgai Khudag and bayan khoshuu alkaline complexes, Southern Mongolia. Int. J. Geosci. 4:8 (2013), 1200–1214, 10.4236/ijg.2013.48114. 4. Baskina, V.A., Volchanskaya, I.K., Kovalenko, V.I., Samoilov, V.S., Vladykin, N.V., Goreglyad, A.V., The potassic alkaline volcanic-plutonic massif at Mushugai-Khuduk in Southern Mongolia and related mineralization. Soviet Geol. 4 (1978), 86–99 in Russian. 5. Bau, M., Dulski, P., Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol. 119 (1995), 213–223, 10.1007/BF00307282. 6. Borisenko, A.S., Analysis of the Salt Composition of Solutions of Gas-liquid Inclusions in Minerals by Cryometric Method. Fluid Inclusions Study for the Search and Study of Ore Deposits. 1982, Nedra, Moscow in Russian. 7. Broom-Fendley, S., Brady, A.E., Horstwood, M.S.A., Woolley, A.R., Mtegha, J., Wall, F., Dawes, W., Gunn, G., Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi. J. Afr. Earth Sci. 134 (2017), 10–23, 10.1016/j.jafrearsci.2017.05.020. 8. Broom-Fendley, S., Brady, A.E., Wall, F., Gunn, G., Dawes, W., REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 81 (2017), 23–41, 10.1016/j.oregeorev.2016.10.019. 9. Bühn, B., Rankin, A.H., Schneider, J., Dulski, P., The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich fluorite: fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chem. Geol. 186 (2002), 75–98, 10.1016/S0009-2541(01)00421-1. 10. Bulnaev, K.B., Fluorine-beryllium deposits of the Vitim Highland, western Transbaikal region: mineral types, localization conditions, magmatism, and age. Geol. Ore Depos. 48 (2006), 277–289. 11. Burisch, M., Walter, B.F., Wälle, M., Markl, G., Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: insights from trace element systematics of individual fluid inclusions. Chem. Geol. 429 (2016), 44–50, 10.1016/j.chemgeo.2016.03.004. 12. Castor, S.B., The Mountain pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can. Mineral. 46 (2008), 779–806, 10.3749/canmin.46.4.779. 13. Dill, H.G., The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth. Rev. 100 (2010), 1–420, 10.1016/j.earscirev.2009.10.011. 14. Doroshkevich, A.G., Ripp, G.S., Viladkar, S.G., Vladykin, N.V., The arshan REE carbonatites, Southwestern Transbaikalia, Russia: mineralogy, paragenesis and evolution. Can. Mineral. 46 (2008), 807–823, 10.3749/canmin.46.4.807. 15. Doroshkevich, A.G., Viladkar, S.G., Ripp, G.S., Burtseva, M.V., Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can. Mineral. 47 (2009), 1105–1116, 10.3749/canmin.47.5.1105. 16. Doroshkevich, A.G., Ripp, G.S., Vladykin, N.V., Savatenkov, V.M., Sources of carbonatite magmatism of Northern Transbaikalia in the Late Riphean: geochemical and isotope geochemical data. Geochemistry 12 (2011), 1271–1283 in Russian. 17. Dunworth, E.A., Bell, K., The Turiy Massif, Kola Peninsula, Russia: mineral chemistry of an ultramafic-alkaline-carbonatite intrusion. Mineral. Mag. 67:3 (2003), 423–451, 10.1180/0026461036730109. 18. Fawzy, M.K., The genesis of fluorite veins in Gabal El Atawi granite, central eastern desert, Egypt. J. Afr. Earth Sci. 146 (2018), 150–157, 10.1016/j.jafrearsci.2017.03.025. 19. Flores, J.A., Nardi, V.S., Formoso, M.L.L., Meunier, A., Pascal, M.L., Fontelles, M., Ferreira, A.C., Granitic rocks of the Rio des Burges Mine: host rock of fluorite deposits in Southernmost Brazil. Int. Geol. Rev. 48 (2006), 63–77. 20. Hornig-Kjarsgaard, I., Rare earth elements in sovitic carbonatites and their mineral phases. J. Petrol. 39 (1998), 2105–2121, 10.1093/petroj/39.11-12.2105. 21. Kesler, S.E., Geochemistry of Manto fluorite deposits, Northern Coahuila, Mexico. Econ. Geol. 72 (1977), 204–218. 22. Kupriyanova, I.I., Shpanov, E.P., Gal'chenko, V.I., Ermakovskoe Fluorite-beryllium Deposit (Western Transbaikalia, Russia). 2009, VIMS, Moscow in Russian. 23. Kynicky, J., Samec, P., Hydrothermally–metasomatic and exsolution–like mineralization of the carbonatites from the selected localities at Gobi. Mongolian Geoscientist 27 (2005), 52–56. 24. Kynicky, J., Smith, M.P., Song, W., Chakhmouradian, A.R., Xu, C., Kopriva, A., Galiova, M.V., Brtnicky, M., The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution. Geosci. Front. 10:2 (2019), 527–537, 10.1016/j.gsf.2018.02.005. 25. Lafuente, B., Downs, R.T., Yang, H., Stone, N., The power of databases: the RRUFF project. Armbruster, T., Danisi, R.M., (eds.) Highlights in Mineralogical Crystallography, 2015, W. De Gruyter, Berlin, Germany, 1–30. 26. Liu, S., Fan, H.R., Yang, K.F., Hu, F.F., Wang, K.Y., Chen, F.K., Yang, Y.H., Yang, Z.F., Wang, Q.W., Mesoproterozoic and Paleozoic hydrothermal metasomatism in the giant Bayan Obo REE-Nb-Fe deposit: constrains from trace elements and Sr-Nd isotope of fluorite and preliminary thermodynamic calculation. Precambrian Res. 311 (2018), 228–246, 10.1016/j.precamres.2018.04.021. 27. Magotra, R., Namga, S., Singh, P., Arora, N., Srivastava, P.K., A new classification scheme of fluorite deposits. Int. J. Geosci. 8 (2017), 599–610, 10.4236/ijg.2017.84032. 28. Margoum, D., Bouabdellah, M., Klügel, A., Banks, D.A., Castorina, F., Cuney, M., Jébrak, M., Bozkaya, G., Pangea rifting and onward pre-central Atlantic opening as the main ore-forming processes for the genesis of the Aouli REE-rich fluorite–barite vein system, Upper Moulouya District, Morocco. J. Afr. Earth Sci. 108 (2015), 22–39, 10.1016/j.jafrearsci.2015.03.021. 29. Mariano, A.N., Nature of economic mineralization in carbonatites and related rocks. Bell, K., (eds.) CarbOnatites: Genesis and Evolution, 1989, Unwin Hyman, London, 580–600. 30. McDonough, W.F., Sun, S.S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253, 10.1016/0009-2541(94)00140-4. 31. Migdisov, A.A., Williams-Jones, A.E., Wagner, T., An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 C. Geochim. Cosmochim. Acta 73 (2009), 7087–7109. 32. Mitchel, R.H., Carbonatites and carbonatites and carbonatites. Can. Mineral. 43:6 (2005), 2049–2068, 10.2113/gscanmin.43.6.2049. 33. Möller, P., Parekh, P.P., Schneider, H.J., The application of Tb/Ca – Tb/La abundance ratios to problems of fluorspar genesis. Miner. Depos. 11 (1976), 111–116. 34. Nadeau, O., Cayer, A., Pelletier, M., Stevenson, R., Jebrak, M., The Paleoproterozoic Montviel carbonatite-hosted REE-Nb deposit, Abitibi, Canada: geology, mineralogy, geochemistry and genesis. Ore Geol. Rev. 67 (2015), 314–335, 10.1016/j.oregeorev.2014.12.017. 35. Ngwenya, B.T., Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochim. Cosmochim. Acta 58 (1994), 2061–2072. 36. Nikolenko, A.M., Redina, A.A., Doroshkevich, A.G., Prokopyev, I.R., Ragozin, A.L., Vladykin, N.V., The origin of magnetite-apatite rocks of Mushgai-Khudag Complex, South Mongolia: mineral chemistry and studies of melt and fluid inclusions. Lithos 320–321 (2018), 567–582, 10.1016/j.lithos.2018.08.030. 37. Ontoev, D.O., Luvsandanzan, B., Gundsambuu, Ts., Geology and primary mineralisation of the Mushugai F-REE deposit (Mongolia). Geol. Ore Depos. 3 (1979), 27–42 in Russian. 38. Öztűrk, H., Altuncu, S., Hanilҫi, N., Kasapҫi, C., Goodenough, K.M., Rare earth element-bearing fluorite deposits of Turkey: an overview. Ore Geol. Rev. 105 (2019), 423–444, 10.1016/j.oregeorev.2018.12.021. 39. Palmer, D.S., Williams-Jones, A., Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. Econ. Geol. 91 (1996), 934–950, 10.2113/gsecongeo.91.5.934. 40. Rankin, A.H., Ni, P., Zhou, J., Fluid inclusion studies on carbonatite dyke and associated quartzite in Bayan Obo, Inner Mongolia, China. Acta Petrologica Sinica 19:2 (2003), 297–306. 41. Ripp, G.S., Karmanov, N.S., Kanakin, S.V., et al. Cerium britholite from the Mushugai deposit, Mongolia. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva 134:2 (2005), 90–103 in Russian with English abstract. 42. Röedder, E., (eds.) Fluid Inclusions, 1984, De Gruyter, Berlin, Boston. 43. Sallet, R., Moritz, R., Fontignie, D., Fluorite 87Sr/86Sr and REE constraints on fluid–melt relations, crystallization time span and bulk DSr of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil. Chem. Geol. 164 (2000), 81–92, 10.1016/S0009-2541(99)00143-6. 44. Samoilov, V.S., Kovalenko, V.I., Complexes of Alkaline Rocks and Carbonatites in South Mongolia. 1983, Nauka, Moscow in Russian. 45. Sanchez, V., Vindel, E., Martin-Crespo, T., Corbella, M., Cardellach, E., Banks, D., Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids 9 (2009), 338–355, 10.1111/j.1468-8123.2009.00259.x. 46. Santos, R.V., Dardenne, M.A., De Oliveira, C.G., Rare earth elements geochemistry of fluorite from the Mato Preto carbonatite complex, Southern Brazil. Revista Brasileira de Geociências 26:2 (1996), 81–86, 10.25249/0375-7536.199628186. 47. Shu, X., Liu, Y., Fluid inclusion constraints on the hydrothermal evolution of the Dalucao Carbonatite-related REE deposit, Sichuan Province, China. Ore Geol. Rev. 107 (2019), 41–57, 10.1016/j.oregeorev.2019.02.014. 48. Sizaret, S., Marcoux, E., Jebrak, M., Touray, J.C., The Rossignol fluorite vein, Chaillac, France: multiphase hydrothermal activity and intravein sedimentation. Econ. Geol. 99 (2004), 1107–1122. 49. Smith, M.P., Campbell, L.S., Kynicky, J., A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, china: multistage processes and outstanding questions. Ore Geol. Rev. 64 (2015), 459–476, 10.1016/j.oregeorev.2014.03.007. 50. Steele-MacInnis, M., Bodnar, R., Naden, J., Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim. Cosmochim. Acta 75 (2011), 21–40, 10.1016/j.gca.2010.10.002. 51. Strong, D.F., Fryer, B.J., Kerrich, R., Genesis of the St. Lawrence fluorspar deposits as indicated by fluid inclusions, rare earth element, and isotopic data. Econ. Geol. 79 (1984), 1142–1158. 52. Vladykin, N.V., Petrology and composition of rare-metal alkaline rocks in the South Gobi Desert (Mongolia). Russ. Geol. Geophys. 54:4 (2013), 545–568, 10.1016/j.rgg.2013.03.00. 53. Wall, F., Mariano, A.N., Rare earth minerals in carbonatites: a discussion centred in the kangankunde carbonatite, Malawi. Jones, A.P., Wall, F., Williams, C.T., (eds.) Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Mineralogical Society Series, Vol. 7, 1996, Chapman and Hall, London, 193–225. 54. Wall, F., Zaitsev, A., Rare earth minerals in Kola carbonatites. Wall, F., Zaitsev, A., (eds.) Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province. Mineralogical Society Bulletin, Vol. 10, 2004, 341–373, 10.1180/MSS.10.10 140. 55. Walter, B.F., Steele-MacInnis, M., Giebel, R.J., Marks, M.A.W., Markl, G., Complex carbonate-sulfate brines in fluid inclusions from carbonatites: estimating compositions in the system H2O-Na-K-CO3-SO4-Cl. Geochim. Cosmochim. Acta 277 (2020), 224–242, 10.1016/j.gca.2020.03.030. 56. Wood, S.A., The aqueous geochemistry of the rare-earth elements and yttrium, 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of nature waters. Chem. Geol. 82 (1990), 159–186. 57. Xu, C., Taylor, R.N., Li, W., Kynicky, J., Chakhmouradian, A.R., Song, W., Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China. J. Asian Earth Sci. 57 (2012), 76–89, 10.1016/j.jseaes.2012.06.007. 58. Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomovsky, Ya.A., Men'shikov, Yu.P., Laplandia Minerals. 2005, Khibiny, Apatity.