Цитирование: | 1. Agashev AM, Watanabe T, Budaev DA, Pokhilenko NP, Fomin AS, Maehara K, Maeda J (2001) Geochemistry of kimberlites from Nakyn field, Siberia: evidence for unique source composition. Geology 29(3):267–270 DOI: 10.1130/0091-7613(2001)029<0267:GOKFTN>2.0.CO;2
2. Agashev AM, Pokhilenko NP, Tolstov AV, Polyanichko VV, Malkovets VG, Sobolev NV (2004) New age data on kimberlites from the Yakutian diamondiferous province. Dokl Earth Sci 399(8):1142–1145
3. Araujo DP, Griffin WL, O’Reilly S, Grant KJ, Ireland T, Holden P, Achterbergh P (2009) Microinclusions in monocrystalline octahedral diamonds and coated diamonds from Diavik, Slave Craton: clues to diamond genesis. Lithos 112:724–735 DOI: 10.1016/j.lithos.2009.04.021
4. Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J Petrol 48:1843–1873 DOI: 10.1093/petrology/egm041
5. Blundy J, Dalton J (2000) Experimental comparison of trace elementpartitioning between clinopyroxene and melt in silicate andcarbonate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371 DOI: 10.1007/s004100000139
6. Boyd SR, Pillinger CT (1994) A preliminary-study of N15 N14 in octahedral growth form diamonds. Chem Geol 116(1–2):43–59 DOI: 10.1016/0009-2541(94)90157-0
7. Boyd SR, Pillinger CT, Milledge HJ, Seal MJ (1992) C-isotopic and N-isotopic composition and the infrared-absorption spectra of coated diamonds-evidence for the regional uniformity of CO2–H2O rich fluids in lithospheric mantle. Earth Planet Sci Lett 108(1–3):139–150 DOI: 10.1016/0012-821X(92)90066-5
8. Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the B nitrogen aggregate in diamond. Philos Mag B 72:351–361 DOI: 10.1080/13642819508239089
9. Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821 DOI: 10.1093/petrology/egn002
10. Broadley MB, Kagi H, Burgess R, Zedgenizov D, Mikhail S, Almayrac M, Ragozin A, Pomazansky B, Sumino H (2018) Plume-lithosphere interaction, and the formation of fibrous diamonds. Geochem Perspectiv Lett 8:26–30 DOI: 10.7185/geochemlet.1825
11. Carswell DA, Dawson JB, Gibb FGF (1981) Equilibration conditions of upper-mantle eclogites: implications for kyanite-bearing and diamondiferous varieties. Mineral Mag 44:79–89 DOI: 10.1180/minmag.1981.44.333.13
12. Cartigny P, Harris JW, Javoy M (1999) Eclogitic, peridotitic, metamorphic diamonds and the problems of carbon recycling: the case of Orapa (Botswana). In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (Eds) J.B. Dawson Volume, Proceedings of the 7th International Kimberlite Conference. Cape Town, pp 117–124
13. Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionation and mantle nitrogen content: a study of δ13C-N concentrations in diamonds. Earth Planet Sci Lett 185:85–98 DOI: 10.1016/S0012-821X(00)00357-5
14. Cartigny P, Palot M, Thomassot E, Harris JW (2014) Diamond formation: a stable isotope perspective. Ann Rev Earth Planet Sci 42:699–732 DOI: 10.1146/annurev-earth-042711-105259
15. Choukroun M, O’Reilly SY, Griffin WL, Pearson NJ, Dawson JB (2005) Hf isotopes of MARID (mica-amphibole- rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 33:45–48 DOI: 10.1130/G21084.1
16. Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135 DOI: 10.1007/s004100050383
17. Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671 DOI: 10.1093/petrology/egi088
18. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci USA 103:15759–15764 DOI: 10.1073/pnas.0607540103
19. Fitzsimons ICW, Harte B, Chinn IL, Gurney JJ, Taylor WR (1999) Extreme chemical variation in complex diamonds from George Creek, Colorado: a SIMS study of carbon isotope composition and nitrogen abundance. Mineral Mag 63(6):857–878 DOI: 10.1180/002646199548970
20. Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Mineral Mag 64(1):59–83 DOI: 10.1180/002646100549139
21. Foley SF (2008) Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci 1:503–510 DOI: 10.1038/ngeo261
22. Gervasoni F, Klemme S, Rorhbach A, Grützner T (2017) Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos 282–283:173–186 DOI: 10.1016/j.lithos.2017.03.004
23. Golovin AV, Sharygin IS, Kamenetsky VS, Korsakov AV, Yaxley GM (2018) Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem Geol 483:261–274 DOI: 10.1016/j.chemgeo.2018.02.016
24. Golovin AV, Sharygin IS, Korsakov AV, Kamenetsky VS, Abersteiner A (2020) Can primitive kimberlite melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths. J Raman Spectrosc 51(9):1849–1867 DOI: 10.1002/jrs.5701
25. Goncharov AG, Ionov DA, Doucet LS, Pokhilenko LN (2012) Thermal state, oxygen fugacity and C–O–H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet Sci Lett 357–358:99–110 DOI: 10.1016/j.epsl.2012.09.016
26. Goss JP, Briddon PR, Hill V, Jones R, Rayson MJ (2014) Identification of the structure of the 3107 cm-1 H-related defect in diamond. J Phys Conden Matter 26:145801 DOI: 10.1088/0953-8984/26/14/145801
27. Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142:603–625 DOI: 10.1007/s00410-001-0315-8
28. Gubanov N, Zedgenizov D, Sharygin I, Ragozin A (2019) Origin and evolution of high-Mg carbonatitic and low-Mg carbonatitic to silicic high-density fluids in coated diamonds from Udachnaya kimberlite pipe. Minerals 9(12):734 DOI: 10.3390/min9120734
29. Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB (2010) Diamonds through time. Econ Geol 105:689–712 DOI: 10.2113/gsecongeo.105.3.689
30. Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368 DOI: 10.1016/S0012-821X(03)00361-3
31. Hammounda T, Keshav S (2015) Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem Geol 418:171–188 DOI: 10.1016/j.chemgeo.2015.05.018
32. Harte B, Fitzsimons ICW, Harris JW, Otter ML (1999) Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province. S Afr Mineral Mag 63(6):829–856 DOI: 10.1180/002646199548961
33. Ickert RB, Stachel T, Stern RA, Harris JW (2013) Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet Sci Lett 364:85–97 DOI: 10.1016/j.epsl.2013.01.008
34. Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332 DOI: 10.1016/S0012-821X(01)00291-6
35. Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South African. Geochim Cosmochim Acta 68:2561–2575 DOI: 10.1016/j.gca.2003.09.005
36. Jablon BM, Navon O (2016) Most diamonds were created equal. Earth Planet Sci Lett 443:41–47 DOI: 10.1016/j.epsl.2016.03.013
37. Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62 DOI: 10.1016/0009-2541(86)90093-8
38. Jones R, Briddon PR, Öberg S (1992) First-principles theory of nitrogen aggregates in diamond. Philos Mag Lett 66(2):67–74 DOI: 10.1080/09500839208214688
39. Kiflawi I, Mayer AE, Spear PM, van Wyk JA, Woods GS (1994) Woods, infrared absorption by the single nitrogen and A defect centres in diamond. Philos Mag B 69:1141–1147 DOI: 10.1080/01418639408240184
40. Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A, Kamenetsky VS (2012) An experimental study of carbonated eclogite at 3.5–5.5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 53:727–759 DOI: 10.1093/petrology/egr078
41. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution—a tale of one diamond. Lithos 77:243–253 DOI: 10.1016/j.lithos.2004.04.003
42. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744 DOI: 10.1016/j.gca.2006.10.008
43. Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112S:648–659 DOI: 10.1016/j.lithos.2009.03.015
44. Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Cartigny P (2010) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet Sci Lett 289:123–133 DOI: 10.1016/j.epsl.2009.10.035
45. Kopylova M, Navon O, Dubrovinsky L, Khachatryan G (2010) Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet Sci Lett 291:126–137 DOI: 10.1016/j.epsl.2009.12.056
46. Lavrent’ev YuG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys 56:1154–1161 DOI: 10.1016/j.rgg.2015.07.006
47. Leahy K, Taylor WR (1997) The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites. Russ Geol Geophys 38(2):481–491
48. Litasov KD, Safonov OG, Ohtani E (2010) Origin of Cl-bearing silica-rich melt inclusions in diamond: experimental evidences for eclogite connection. Geology 38:1131–1134 DOI: 10.1130/G31325.1
49. Litvin YuA, Spivak AV, Kuzyura AV (2016) Fundamentals of the mantle carbonatite concept of diamond genesis. Geochem Int 54(10):839–857 DOI: 10.1134/S0016702916100086
50. Logvinova AM, Wirth R, Tomilenko AA, Afanas’ev VP, Sobolev NV (2011) The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russ Geol Geophys 52(11):1286–1297 DOI: 10.1016/j.rgg.2011.10.002
51. Malkovets VG, Rezvukhin DI, Belousova EA, Griffin WL, Sharygin IS, Tretiakova IG, Gibsher AA, O’Reilly SY, Kuzmin DV, Litasov KD, Logvinova AM (2016) Cr-rich rutile: a powerful tool for diamond exploration. Lithos 265:304–311 DOI: 10.1016/j.lithos.2016.08.017
52. Mattey DP (1987) Carbon isotopes in the mantle. Terra Cognita 7:31–37
53. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253 DOI: 10.1016/0009-2541(94)00140-4
54. Mikhail S, Verchovsky AB, Howell D, Hutchison MT, Southworth R, Thomson AR, Warburton P, Jones AP, Milledge HJ (2014) Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds. Chem Geol 366:14–23 DOI: 10.1016/j.chemgeo.2013.12.014
55. Miller CE, Kopylova M, Smith E (2014) Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation. Mineral Petrol 108:317–331 DOI: 10.1007/s00710-013-0305-3
56. Moore M, Lang AR (1972) On the internal structure of natural diamonds of cubic habit. Philos Mag 26:1313–1325 DOI: 10.1080/14786437208220345
57. Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789 DOI: 10.1038/335784a0
58. Navon O, Klein-BenDavid O, Weiss Y (2008) Diamond-forming fluids: their origin and evolution. In: The Abstracts of 9th Intern Kimb Conf: A-00121
59. O’Reilly SY, Griffin WL (2013) Mantle Metasomatism. In: Harlow DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, New York, pp 471–534 DOI: 10.1007/978-3-642-28394-9_12
60. Orlov YuL (1977) Mineralogy of diamond. Wiley, New York, p 234
61. Palyanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (2002) Diamond formation from mantle carbonate fluids. Nature 400:417–418 DOI: 10.1038/22678
62. Palyanov YuN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of mantle ultrapotassic fluids in diamond formation. Proc Natl Acad Sci USA 104(22):9122–9127 DOI: 10.1073/pnas.0608134104
63. Perchuk LL, Safonov OG, Yapaskurt VO, Barton JM (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos 60:89–111 DOI: 10.1016/S0024-4937(01)00072-X
64. Rege S, Jackson S, Griffin WL, Davies RM, Pearson NJ, O’Reilly SY (2005) Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 20:601–611 DOI: 10.1039/b501374g
65. Riches AJV, Liu Y, Day JMD, Spetsius ZV, Taylor LA (2010) Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120:368–378 DOI: 10.1016/j.lithos.2010.09.006
66. Richet P, Bottinga Y, Javoy M (1977) Review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110 DOI: 10.1146/annurev.ea.05.050177.000433
67. Rosen OM, Condie KC, Natapov LM, Nozhkin AD (1994) Archean and early proterozoic evolution of the siberian craton: a preliminary assessment. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 411–459 DOI: 10.1016/S0166-2635(08)70228-7
68. Rosen OM, Levsky LK, Zhuravlev DZ, Rotman AYa, Spetsius ZV, Makeev AF, Zinchuk NN, Manakov AV, Serenko VP (2006) Palaeoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigr Geol Correl 14:581–601 DOI: 10.1134/S0869593806060013
69. Safonov OG, Perchuk LL, Litvi YA (2007) Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle. Earth Planet Sci Lett 253:112–128 DOI: 10.1016/j.epsl.2006.10.020
70. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precamb Res 106:117–134 DOI: 10.1016/S0301-9268(00)00128-5
71. Schneider M, Eggler H (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724 DOI: 10.1016/0016-7037(86)90347-9
72. Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 52:761–771 DOI: 10.1016/0016-7037(94)90504-5
73. Shatskiy A, Litasov KD, Sharygin IS, Ohtani E (2017) Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res 45:208–227 DOI: 10.1016/j.gr.2017.02.009
74. Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, Pearson G, Sobolev NV, Walter MJ (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75:355–421 DOI: 10.2138/rmg.2013.75.12
75. Skuzovatov SYu, Zedgenizov DA (2019) Protracted fluid-metasomatism of the Siberian diamondiferous subcontinental lithospheric mantle as recorded in coated, cloudy and monocrystalline diamonds. Mineral Petrol 113(3):285–306 DOI: 10.1007/s00710-019-00656-0
76. Skuzovatov SYu, Zedgenizov DA, Shatsky VS, Ragozin AL, Kuper KE (2011) Composition of cloudy microinclusions in octahedral diamonds from the Internatsional’naya kimberlite pipe (Yakutia). Russ Geol Geophys 52(1):85–96 DOI: 10.1016/j.rgg.2010.12.007
77. Skuzovatov SYu, Zedgenizov DA, Ragozin AL, Shatsky VS (2012) Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia). Russ Geol Geophys 53(11):1197–1208 DOI: 10.1016/j.rgg.2012.09.006
78. Skuzovatov SYu, Zedgenizov DA, Howell DA, Griffin W (2016) Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton). Lithos 265:96–107 DOI: 10.1016/j.lithos.2016.04.013
79. Smart KA, Chacko T, Stachel T, Muehlenbachs K, Stern RA, Heaman LM (2011) Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim Cosmochim Acta 75:6027–6047 DOI: 10.1016/j.gca.2011.07.028
80. Sobolev NV (1974) Deep-seated inclusions in kimberlites and the problem of the composition of the Upper Mantle. American Geophysical Union, Washington, D.C., p 279
81. Sobolev EV, Lisoivan VI (1978) Nitrogen centers and the growth of natural diamond crystals. In: Kuznetsov VA (ed) Problems of crustal and upper-mantle petrology, transactions of the Institute of Geology and Geophysics, Issue 403. Nauka, Novosibirsk, pp 245–255 ((in Russian))
82. Spetsius ZV, Cliff J, Griffin WL, O’Reilly SY (2017) Carbon isotopes of eclogite-hosted diamonds from the Nyurbinskaya kimberlite pipe, Yakutia: the metasomatic origin of diamonds. Chem Geol 455:131–147 DOI: 10.1016/j.chemgeo.2016.11.002
83. Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32 DOI: 10.1016/j.oregeorev.2007.05.002
84. Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220 DOI: 10.1016/j.lithos.2015.01.028
85. Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion bearing diamonds. Lithos 112:625–637 DOI: 10.1016/j.lithos.2009.04.017
86. Stagno V, Frost DJ (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300(1–2):72–84 DOI: 10.1016/j.epsl.2010.09.038
87. Sun J, Kostrovitsky SI, Tappe S, Liu C-Z, Skuzovatov SYu, Wu F-Y (2018) Mantle sources of kimberlites through time: a U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem Geol 479:228–240 DOI: 10.1016/j.chemgeo.2018.01.013
88. Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Crystal Growth 99:1156–1161 DOI: 10.1016/S0022-0248(08)80100-5
89. Sverjensky DA, Huang F (2015) A new mechanism for diamond formation. Nat Commun 6:8702 DOI: 10.1038/ncomms9702
90. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol 150:505–522 DOI: 10.1007/s00410-005-0035-6
91. Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite; implications for metasomatism in the continental lithospheric mantle. Am Mineral 77(7–8):784–794
92. Thomassot E, Cartigny P, Harris JW, Viljoen KSF (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371 DOI: 10.1016/j.epsl.2007.02.020
93. Timmerman S, Jaques AL, Weiss Y, Harris JW (2018) N-δ13C-inclusion profiles of cloudy diamonds from Koffiefontein: evidence for formation by continuous Rayleigh fractionation and multiple fluids. Chem Geol 483:31–46 DOI: 10.1016/j.chemgeo.2018.02.024
94. Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sci Lett 250:581–595 DOI: 10.1016/j.epsl.2006.08.005
95. Wang W (1998) Formation of diamond with mineral inclusions of “mixed” eclogite and peridotite paragenesis. Earth Planet Sci Lett 160:831–843 DOI: 10.1016/S0012-821X(98)00131-9
96. Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674 DOI: 10.1016/j.lithos.2009.05.038
97. Weiss Y, Kiflawi I, Navon O (2010) IR spectroscopy: quantitative determination of the mineralogy and bulk composition of fluid microinclusions in diamonds. Chem Geol 275:26–34 DOI: 10.1016/j.chemgeo.2010.04.010
98. Weiss Y, Griffin WL, Bell DR, Navon O (2011) High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet Sci Lett 309:337–347 DOI: 10.1016/j.epsl.2011.07.012
99. Weiss Y, Griffin WL, Navon O (2013) Diamond-forming fluids in fibrous diamonds: the trace element perspective. Earth Planet Sci Lett 376:110–125 DOI: 10.1016/j.epsl.2013.06.021
100. Weiss Y, Kiflawi I, Davies N, Navon O (2014) High-density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Acta 141:145–159 DOI: 10.1016/j.gca.2014.05.050
101. Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducted slab as the source for fluid-rich diamonds. Nature 524:339–342 DOI: 10.1038/nature14857
102. Weiss Y, Class C, Goldstein SL, Winckler G (2017) Ages of mantle metasomatism from U–Th–He systematics of diamond-forming C–O–H fluids. In: 11th International Kimberlite Conference Extended Abstract No. 11IKC-4460
103. Weiss Y, Navon O, Goldstein SL, Harris JW (2018) Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle. Earth Planet Sci Lett 491:134–147 DOI: 10.1016/j.epsl.2018.03.014
104. Wiggers de Vries DF, Bulanova GP, De Corte K, Pearson DG, Craven JA, Davies GR (2013) Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: evidence for episodic diamond formation beneath the Siberian Craton. Geochim Cosmochim Acta 100:176–199 DOI: 10.1016/j.gca.2012.08.034
105. Woods GS (1986) Platelets and the infrared absorption of type Ia diamonds. Proc Royal Soc Lond A407:219–238
106. Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41:1195–1206 DOI: 10.1093/petrology/41.7.1195
107. Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146(5): 606–619
108. Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, Berlin Heidelberg, p 502 DOI: 10.1007/978-3-662-04548-0
109. Zedgenizov DA, Kagi HK, Shatsky VS, Sobolev NV (2004) Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy. Mineral Mag 68:61–73 DOI: 10.1180/0026461046810171
110. Zedgenizov DA, Harte B, Shatsky VS, Politov AA, Rylov GM, Sobolev NV (2006) Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib Mineral Petrol 151:45–57 DOI: 10.1007/s00410-005-0044-5
111. Zedgenizov DA, Rege S, Griffin WL, Kagi H, Shatsky VS (2007) Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem Geol 240:151–162 DOI: 10.1016/j.chemgeo.2007.02.003
112. Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647 DOI: 10.1016/j.lithos.2009.05.008
113. Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL (2011) Fibrous diamonds from the placers of the northeastern Siberian Platform: carbonate and silicate crystallization media. Russ Geol Geophys 52:1298–1309 DOI: 10.1016/j.rgg.2011.10.003
114. Zedgenizov DA, Rubatto D, Shatsky VS, Ragozin AL, Kalinina VV (2016) Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: trace elements and coupled δ13C-δ18O signatures in diamonds and garnet inclusions. Chem Geol 422:46–59 DOI: 10.1016/j.chemgeo.2015.12.018
115. Zedgenizov DA, Kalinin AA, Kalinina VV, Palyanov YuN, Shatsky VS (2017) Nitrogen and hydrogen aggregation in natural octahedral and cuboid diamond. Geochem J 51:181–192 DOI: 10.2343/geochemj.2.0452
|