Цитирование: | 1. Лиманцева О.А., Алексеева Н.В., Платонова А.В. (2018) Анализ гидрогеохимических условий нижнесреднекембрийского водоносного комплекса на Талаканском нефтегазоконденсатном месторождении по результатам термодинамического моделирования. Материалы конференции Геологическая эволюция взаимодействия воды с горными породами. С. 276-279.
2. Abdelouasa A., Yongming Lu, Lutze W., Nuttall H.E. (1998) Reduction of U (VI) to U (IV) by indigenous bacteria in contaminated ground water. J. Cont. Hydr.35(1–3), 217-233.
3. Anderson R.T., Vrionis H.A., Ortiz-Bernad I., Resch C.T., Long P.E., Dayvault R., Karp K., Marutzky S., Metzler D.R., Peacock A., White D.C., Lowe M., Lovley D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. environ. microbiol. 69(10), 5884-5891.
4. Carpenter J., Bi Y., Hayes. K.F. (2015) Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments. Environ. Sci.&Tech.49(2), 1078-1085.
5. Chen C., Sync F., Zhang H., Wang J., Shen Y., Liang X. (2016) Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresource tech. 216, 571-578.
6. Cho K.C., Fuller M.E., Hatzinger P.B., Chu K.H. (2016) Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation. Sci. Total Environ.569, 1098-1106.
7. Dixit R., Wasiullah, Malaviya D., Kuppusamy P., Udai B.S., Asha S., Renu S., Bhanu P.S., Jai P.R., Pawan K.S., Harshad L., Diby P. (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 7(2), 2189-2212.
8. Dullies F., Lutze W., Gong W., Nuttall H.E. (2010) Biological reduction of uranium – From the laboratory to the field. Sci. Total Environ. 408(24), 6260-6271.
9. Eschenbach W., Well R., Walther W. (2015) Predicting the denitrification capacity of sandy aquifers from in situ measurements using push–pull 15 N tracer tests. Biogeosciences.12(8), 2327-2346.
10. Gorman-Lewis D. Shvareva T., Kubatko K.A., Burns P.C., Wellman D.M., Mcnamara B., Szymanowski J.E., Navrotsky A., Fein J.B. (2009) Thermodynamic properties of autunite, uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetric measurements. Environ. Sci.&Tech. 43(19), 7416-7422.
11. Hallbeck L., Pedersen K. (2012) Culture-dependent comparison of microbial diversity in deep granitic groundwater from two sites considered for a Swedish final repository of spent nuclear fuel. FEMS microbiol. ecol. 81(1), 66-77.
12. Hazen T.C. (2018) In situ: groundwater bioremediation. Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. (Ed. Steffan R.). Springer, 1-18.
13. Holmes D.E., Orelana R., Giloteaux L., Wang L.Y., Shrestha P., Williams K., Lovley D.R., Rotaru A.E. (2018) Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation. Microb. Ecol.76(3), 1-8.
14. Kulshreshtha A., Agrawal R., Barar M., Saxena S. (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J. Environ. Sci.,Toxicol.&Food Technol. 8(7), 44-50.
15. Parkhurst D. L., Wissmeier L. Phreeq R.M. (2015) A reaction module for transport simulators based on the geochemical model PHREEQC. Adv. Water Res. 83, 176-189.
16. Senko J.M., Jonathan D.I., Joseph M.S., Krumholz L.R. (2002) In-situ evidence for uranium immobilization and remobilization. Environ. Sci.&Tech. 36(7), 1491-1496.
17. Sodov A., Gaskova O., Vladimirov A., Battushig A., Moroz E. (2016) Spatial Distribution of Uranium and Metalloids in Groundwater near sandstone-type uranium deposits, Southern Mongolia. Geochem. J.50(5), 393-401.
18. Yi Z.J., Tan K.X., Tan A.L., Yu Z.X., Wang S.Q. (2007) Influence of environmental factors on reductive bioprecipitation of uranium by sulfate reducing bacteria. Int. Biodeter.&Biodegrad.60(4), 258-266.
|