Инд. авторы: Сагатова Д.Н., Шацкий А.Ф., Сагатов Н.Е., Литасов К.Д.
Заглавие: Фазовые взаимоотношения в системе casio3 до 100 гпа и 2500 k
Библ. ссылка: Сагатова Д.Н., Шацкий А.Ф., Сагатов Н.Е., Литасов К.Д. Фазовые взаимоотношения в системе casio3 до 100 гпа и 2500 k // Геохимия. - 2021. - Т.66. - № 8. - С.745-755. - ISSN 0016-7525.
Внешние системы: DOI: 10.31857/S0016752521080070; РИНЦ: 46120192;
Реферат: rus: На основе теории функционала плотности с помощью метода решеточной динамики в квазигармоническом приближении впервые комплексно исследованы фазовые взаимоотношения в одной из ключевых петрологических систем, CaSiO3, в интервале давлений 0–100 ГПа и температур 0–2500 K. Результаты исследований показали, что при атмосферном давлении и 0 K CaSiO3 стабилен в структуре волластонита, который выше температуры 1250 K переходит в высокотемпературную модификацию псевдоволластонит. Выше давления 4 ГПа CaSiO3 стабилизируется в структуре брейита. Линия фазового равновесия имеет отрицательный наклон к оси давления с dP/dT = –0.6 МПа/K. При 8 ГПа CaSiO3 распадается на ассоциацию Ca2SiO4-ларнита и CaSi2O5 со структурой титанита. Линия фазового равновесия имеет положительный наклон к оси давления с dP/dT = 1.35 МПа/K. При давлении 13 ГПа Ca2SiO4-ларнит реагирует с CaSi2O5, образуя фазу с перовскитоподобной структурой – CaSiO3-перовскит. Давление данного фазового перехода практически не зависит от температуры. В низкотемпературной области Ca-перовскит стабилен в тетрагональной модификации CaSi-O3-I4/mcm. Выше 340 K при 13 ГПа Ca-перовскит стабилизируется в кубической модификации CaSiO3-$Pm\bar {3}m.$ С увеличением давления до 100 ГПа, температура фазового перехода возрастает до 755 K. Также впервые рассчитаны термодинамические параметры для фаз волластонита, псевдоволластонита и CaSi2O5 со структурой титанита.
Ключевые слова: квазигармоническое приближение; теория функционала плотности; мантия; ларнит; перовскит; брейит; волластонит;
Издано: 2021
Физ. характеристика: с.745-755
Цитирование: 1. Adams D.J., Oganov A.R. (2006) Ab initio molecular dynamics study of CaSiO3 perovskite at P–T conditions of Earth’s lower mantle. Phys. Rev. B.73(18), 184106. 2. Akaogi M., Yano M., Tejima Y., Iijima M., Kojitani H. (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Phys. Earth Planet. Inter.143–144, 145-156. 3. Akber-Knutson S., Bukowinski M.S.T., Matas J. (2002) On the structure and compressibility of CaSiO3 perovskite. Geophys. Res. Lett.29(3), 1034. 4. Angel R.J. (1997) Transformation of fivefold-coordinated silicon to octahedral silicon in calcium silicate, CaSi2O5. Am. Mineral.82(7–8), 836-839. 5. Anzolini C., Angel R.J., Merlini M., Derzsi M., Tokár K., Milani S., Krebs M.Y., Brenker F.E., Nestola F., Harris J.W. (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos.265, 138-147. 6. Blöchl P.E. (1994) Projector augmented-wave method. Phys. Rev. B.50(24), 17953-17979. 7. Brenker F., Nestola F., Brenker L., Peruzzo L., Secco L., Harris J.W. (2018). Breyite, IMA 2018-062, CNMNC Newsletter No. 45, October 2018. Eur. J. Mineral. 30, 1037-1043. 8. Caracas R., Wentzcovitch R., Price G.D., Brodholt J. (2005) CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett.32(6), L06306. 9. Chatterjee N.D., Johannes W., Leistner H. (1984) The system CaO–Al2O3–SiO2–H2O: New phase equilibria data, some calculated phase relations, and their petrological applications. Contrib. Mineral. Petrol.88(1–2), 1-13. 10. Chen H., Shim S.-H., Leinenweber K., Prakapenka V., Meng Y., Prescher C. (2018) Crystal structure of CaSiO3 perovskite at 28–62 GPa and 300 K under quasi-hydrostatic stress conditions. Am. Mineral.103(3), 462-468. 11. Chizmeshya A.V.G., Wolf G.H., McMillan P.F. (1996) First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite. Geophys. Res. Lett.23(20), 2725-2728. 12. Essene E. (1974) High-pressure transformations in CaSiO3. Contrib. to Mineral. Petrol.45(3), 247-250. 13. Fedoraeva A.S., Shatskiy A., Litasov K.D. (2019) The join CaCO3–CaSiO3 at 6 GPa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. High Press. Res.39(4), 547-560. 14. Gavryushkin P.N., Bekhtenova A., Lobanov S.S., Shatskiy A., Likhacheva A.Y., Sagatova D., Sagatov N., Rashchenko S.V., Litasov K.D., Sharygin I.S. (2019) High-pressure phase diagrams of Na2CO3 and K2CO3. Minerals.9(10), 599. 15. Gasparik T., Wolf K., Smith C.M. (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am. Mineral.79(11–12), 1219-1222. 16. Hirose K., Takafuji N., Sata N., Ohishi Y. (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett.237(1), 239-251. 17. Holland T.J.B., Powell R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol.16(3), 309-343. 18. Irifune T., Shinmei T., McCammon C.A., Miyajima N., Rubie D.C., Frost D.J. (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science.327(5962), 193-195. 19. Jost K., Ziemer B., Seydel R. (1977) Redetermination of the structure of β-dicalcium silicate. Acta Crystallogr. Sec. B:Structural Crystallography and Crystal Chemistry.33(6), 1696-1700. 20. Joswig W., Paulus E.F., Winkler B., Milman V. (2003) The crystal structure of CaSiO3-walstromite, a special isomorph of wollastonite-II. Z. Kristallogr. Cryst. Mater.218(12), 811-818. 21. Joswig W., Stachel T., Harris J.W., Baur W.H., Brey G.P. (1999) New Ca-silicate inclusions in diamonds – tracers from the lower mantle. Earth Planet. Sci. Lett.173(1), 1-6. 22. Jung D.Y., Oganov A.R. (2005) Ab initio study of the high-pressure behavior of CaSiO3 perovskite. Phys. Chem. Miner.32(2), 146-153. 23. Kanzaki M., Stebbins J.F., Xue X. (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophys. Res. Lett.18(3), 463-466. 24. Karki B.B., Crain J. (1998) First-principles determination of elastic properties of CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett.25(14), 2741-2744. 25. Kawai K., Tsuchiya T. (2014) P-V-T equation of state of cubic CaSiO3 perovskite from first-principles computation. J. Geophys. Res: Solid Earth.119(4), 2801-2809. 26. Komabayashi T., Hirose K., Sata N., Ohishi Y., Dubrovinsky L.S. (2007) Phase transition in CaSiO3 perovskite. Earth Planet. Sci. Lett.260(3), 564-569. 27. Kresse G., Furthmüller J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B.54(16), 11169-11186. 28. Kresse G., Joubert D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B.59(3), 1758-1775. 29. Kubo A., Suzuki T., Akaogi M. (1997) High pressure phase equilibria in the system CaTiO3–CaSiO3: stability of perovskite solid solutions. Phys. Chem. Miner.24(7), 488-494. 30. Kurashina T., Hirose K., Ono S., Sata N., Ohishi Y. (2004) Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys. Earth Planet. Inter.145(1), 67-74. 31. Li L., Weidner D.J., Brodholt J., Alfè D., Price G.D., Caracas R., Wentzcovitch R. (2006) Phase stability of CaSiO3 perovskite at high pressure and temperature: Insights from ab initio molecular dynamics. Phys. Earth Planet. Inter.155(3), 260-268. 32. Litasov K.D., Shatskiy A. (2018) Carbon-bearing magmas in the Earth’s deep interior. In: Magmas Under Pressure (Eds. Kono Y., Sanloup C.). Elsevier, 43-82. 33. Liu L.-G., Ringwood A.E. (1975) Synthesis of a perovskite-type polymorph of CaSiO3. Earth Planet. Sci. Lett.28(2), 209-211. 34. Magyari-Köpe B., Vitos L., Johansson B., Kollár J. (2002) Model structure of perovskites: cubic-orthorhombic phase transition. Comp. Mater. Sci.25(4), 615-621. 35. Mao H.K., Chen L.C., Hemley R.J., Jephcoat A.P., Wu Y., Bassett W.A. (1989) Stability and equation of state of CaSi-O3-Perovskite to 134 GPa. J. Geophys. Res: Solid Earth.94(B12), 17889-17894. 36. Merkys A., Vaitkus A., Butkus J., Okulič-Kazarinas M., Kairys V., Gražulis S. (2016) COD:: CIF:: Parser: an error-correcting CIF parser for the Perl language. J. Appl. Crystallogr.49(1), 292-301. 37. Monkhorst H.J., Pack J.D. (1976) Special points for Brillouin-zone integrations. Phys. Rev. B.13(12), 5188-5192. 38. O’Neill B., Jeanloz R. (1990) Experimental petrology of the lower mantle: A natural peredottte taken to 54 GPa. Geophys. Res. Lett.17(10), 1477-1480. 39. Ono S., Ohishi Y., Mibe K. (2004) Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. Am. Mineral.89(10), 1480-1485. 40. Perdew J.P., Burke K., Ernzerhof M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett.77(18), 3865-3868. 41. Quirós M., Gražulis S., Girdzijauskaitė S., Merkys A., Vaitkus A. (2018) Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J. Cheminformatics.10(1), 23. 42. Ricolleau A., Perrillat J.-P., Fiquet G., Daniel I., Matas J., Addad A., Menguy N., Cardon H., Mezouar M., Guignot N. (2010) Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res: Solid Earth.115(B8), B08202. 43. Ringwood A.E. (1975) Composition and Petrology of the Earth's Mantle. MacGraw-Hill618. 44. Shim S.-H., Duffy T.S., Shen G. (2000) The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J. Geophys. Res: Solid Earth.105(B11), 25955-25968. 45. Shim S.H., Jeanloz R., Duffy T.S. (2002) Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophys. Res. Lett.29(24), 2166. 46. Stixrude L., Cohen R.E., Yu R., Krakauer H. (1996) Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. Am. Mineral.81(9-10), 1293-1296. 47. Stixrude L., Lithgow-Bertelloni C., Kiefer B., Fumagalli P. (2007) Phase stability and shear softening in CaSiO3 perovskite at high pressure. Phys. Rev. B.75(2), 024108. 48. Sueda Y., Irifune T., Yamada A., Inoue T., Liu X., Funakoshi K.I. (2006) The phase boundary between CaSiO3 perovskite and Ca2SiO4 + CaSi2O5 determined by in situ X-ray observations. Geophys. Res. Lett.33(10), L10307. 49. Sun N., Mao Z., Yan S., Wu X., Prakapenka V.B., Lin J.-F. (2016) Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3 perovskite. J. Geophys. Res: Solid Earth.121(7), 4876-4894. 50. Sun T., Zhang D.-B., Wentzcovitch R.M. (2014) Dynamic stabilization of cubic CaSiO3 perovskite at high temperatures and pressures from ab initio molecular dynamics. Phys. Rev. B.89(9), 094109. 51. Tadano T., Gohda Y., Tsuneyuki S. (2014) Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter.26(22), 225402. 52. Tadano T., Tsuneyuki S. (2015) Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B.92(5), 054301. 53. Tamai H., Yagi T. (1989) High-pressure and high-temperature phase relations in CaSiO3 and CaMgSi2O6 and elasticity of perovskite-type CaSiO3. Phys. Earth Planet. Inter.54(3), 370-377. 54. Thomson A.R., Crichton W.A., Brodholt J.P., Wood I.G., Siersch N.C., Muir J.M.R., Dobson D.P., Hunt S.A. (2019) Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature.572(7771), 643-647. 55. Togo A., Tanaka I. (2015) First principles phonon calculations in materials science. Scripta Mater.108, 1-5. 56. Vinet P., Ferrante J., Rose J.H., Smith J.R. (1987) Compressibility of solids. J. Geophys. Res: Solid Earth.92(B9), 9319-9325. 57. Wang Y., Weidner D.J. (1994) Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophys. Res. Lett.21(10), 895-898. 58. Wang Y., Weidner D.J., Guyot F. (1996) Thermal equation of state of CaSiO3 perovskite. J. Geophys. Res: Solid Earth.101(B1), 661-672. 59. Wolf G.H., Bukowinski M.S. (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: Implications for lower mantle composition. High-Pres. Res. in Miner. Phys.,Geophys. Monogr. Ser.39, 313-331. 60. Woodland A.B., Girnis A.V., Bulatov V.K., Brey G.P., Höfer H.E. (2020) Breyite inclusions in diamond: experimental evidence for possible dual origin. Eur. J. Mineral.32(1), 171-185. 61. Xiong Z., Liu X., Shieh S.R., Wang S., Chang L., Tang J., Hong X., Zhang Z., Wang H. (2016) Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation. Am. Mineral.101(2), 277-288. 62. Yamnova N.A., Zubkova N.V., Eremin N.N., Zadov A.E., Gazeev V.M. (2011) Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr. Rep.56(2), 210-220. 63. Yang H., Prewitt C.T. (1999) Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO3). Am. Mineral.84(11–12), 1902-1905. 64. Zedgenizov D.A., Shatskiy A., Ragozin A.L., Kagi H., Shatsky V.S. (2014) Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. Am. Mineral.99(2–3), 547-550. 65. Zhang Y., Zhao D., Matsui M., Guo G. (2006) Equations of state of CaSiO3 Perovskite: a molecular dynamics study. Phys. Chem. Miner.33(2), 126-137.