Инд. авторы: Виноградова Ю.Г., Шацкий А.Ф., Литасов К.Д
Заглавие: Термодинамический анализ реакций co2-флюида с гранатами и клинопироксенами при 3–6 гпа
Библ. ссылка: Виноградова Ю.Г., Шацкий А.Ф., Литасов К.Д Термодинамический анализ реакций co2-флюида с гранатами и клинопироксенами при 3–6 гпа // Геохимия. - 2021. - Т.66. - № 9. - С.811-817. - ISSN 0016-7525.
Внешние системы: DOI: 10.31857/S0016752521080100; РИНЦ: 46198329;
Реферат: rus: Изучение включений в алмазах предоставляет информацию о составе верхней мантии. Помимо минералов многими исследователями было отмечено присутствие флюидных включений, одним из компонентов которых является CO2. Существующие экспериментальные работы показывают невозможность сосуществования CO2-флюида с основными компонентами мантии, однако есть основания полагать, что комплексный состав минералов способствует их стабилизации. В данной статье приводятся термодинамические расчеты для реакций твердых растворов диопсид-жадеит и пироп-гроссуляр с CO2. Показано, что образование твердых растворов расширяет область устойчивости СО2-флюида с минералами эклогитов в область более низких температур, соответствующих геотермальным условиям континентальной литосферы. Полученные закономерности подтверждаются результатами тестовых экспериментов с модельными смесями при высоких давлениях и температурах.
Ключевые слова: алмаз; верхняя мантия; жадеит; диопсид; гроссуляр; пироп; CO2-флюид; термодинамические расчеты;
Издано: 2021
Физ. характеристика: с.811-817
Цитирование: 1. Баталева Ю.В., Новоселов И.Д., Крук А.Н., Фурман О.В., Реутский В.Н. Пальянов Ю.Н. (2020) Экспериментальное моделирование реакций декарбонатизации, сопряженных с образованием Mg, Fe-гранатов и CO2-флюида при мантийных P, T-параметрах. Геология и геофизика.61(S5-6), 794-809. 2. Литасов К.Д. (2011) Физико-химические условия плавления мантии Земли в присутствии С-О-Н-флюида по экспериментальным данным. Геология и геофизика.52(5), 613-635. 3. Литасов К.Д., Шацкий А.Ф. (2019) Исследование реакции MgCO3 + SiO2 при давлениях до 32 ГПа с помощью рентгеновской дифрактометрии и синхротронного излучения. Геохимия.64(9), 1003-1012. 4. Litasov K.D., Shatskiy A.F. (2019) MgCO3 + SiO2 Reaction at Pressures up to 32 GPa Studied Using in-Situ X-Ray Diffraction and Synchrotron Radiation. Geochem. Int.57(9), 1024-1033. 5. Похиленко Н.П., Агашев А.М., Литасов К.Д., Похиленко Л.Н. (2015) Взаимоотношения карбонатитового метасоматоза деплетированных перидотитов литосферной мантии с алмазообразованием и карбонатит-кимберлитовым магматизмом. Геология и геофизика.56(1-2), 361-383. 6. Рагозин А.Л., Шацкий В.С., Рылов Г.М., Горяйнов С.В. (2002) Включения коэсита в округлых алмазах из россыпей северо-восточной части Сибирской платформы. ДАН.384(4), 509-513. 7. Рагозин А.Л., Шацкий В.С., Зедгенизов Д.А. (2009) Новые данные о составе среды кристаллизации алмазов V разновидности из россыпей северо-востока Сибирской платформы. ДАН.425(4), 527-531. 8. Томиленко А.А., Рагозин А.Л., Шацкий В.С., Шебанин, А.П. (2001) Вариации состава флюидной фазы в процессе кристаллизации природных алмазов. ДАН.378(6), 802-805. 9. Bataleva Y.V., Kruk A.N., Novoselov I.D., Furman O.V., Palyanov Y.N. (2020a) Decarbonation reactions involving ankerite and dolomite under upper mantle P, T-parameters: Experimental modeling. Minerals.10(8), 715. 10. Berman R.G. (1991) Thermobarometry using multi-equilibrium calculations: a new technique with petrological application. Can. Miner.29(4), 833-855. 11. Chinn I.L. (1995) Cathodoluminescence properties of CO2-bearing and CO2-free diamonds from the George Creek K1 Kimberlite dyke. Int. Geol. Rev.37(3), 254-258. 12. Dalton J.A., Presnall D.C. (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol.131, 123-135. 13. Gasparik T. (1985) Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200–1350°C and 15–34 kbar. Geochim. Cosmochim. Acta.3(49), 865-870 14. Guthrie G.D., Veblen D.R., Navon O., Rossman G.R. (1991) Submicrometer fluid inclusions in turbid-diamond coats. Earth Planet. Sci. Lett.105(1–3), 1-12. 15. Holland T., Powell R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorphic Geol.16(3), 309-343. 16. Holland T., Powell R. (2003) Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol. 145, 492-501. 17. Kennedy C.S., Kennedy G.C. (1976) The equilibrium boundary between graphite and diamond. J. Geophys. Res.81(14), 2467-2470. 18. Knoche R., Sweeney R.J., Luth R.W. (1999) Carbonation and decarbonation of eclogites: the role of garnet. Contrib Mineral Petrol.135(4), 332-339. 19. Koziol A.M., Newton R.C. (1998) Experimental determination of the reaction: Magnesite + enstatite = forsterite + CO2 in the ranges 6–25 kbar and 700–1100°C. American Mineralogist, 83(3–4), 213-219. 20. Luth R.W. (1995) Experimental determination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa. Contrib Mineral Petrol.122(1–2), 152-158. 21. Navon O., Hutcheon I., Rossman G., Wasserburg G. (1988) Mantle-derived fluids in diamond micro-inclusions. Nature.335(6193), 784-789. 22. Navrotsky A. (1987) Models of crystalline solutions. In Thermodynamic Modeling of Geologic Materials: Minerals, Fluids, and Melts (Eds. Carmichael I.S.E., Eugster H.). De Gruyter, 499. 23. Podborodnikov I.V., Shatskiy A., Arefiev A.V., Bekhtenova A., Litasov K.D. (2019) New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem. Geol.515, 50-60. 24. Podborodnikov I.V., Shatskiy A., Arefiev A.V., Litasov K.D. (2019a) Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution. Lithos.330–331, 74-89. 25. Pollack H.N., Chapman D.S. (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics.38, 279-296. 26. Ragozin A.L., Zedgenizov D.A., Kuper K.E., Shatsky V.S. (2016) Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. Mineral. Petrol.110(6), 861-875. 27. Schrauder M., Navon O. (1993) Solid carbon dioxide in natural diamond. Nature.365(6441), 42-44. 28. Sharygin I.S., Litasov K.D., Shatskiy A. F., Golovin A.V., Ohtani E., Pokhilenko N.P. (2015) Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melt and implication to mantle plumes. Gondwana Research.28(4), 1391-1414. 29. Sharygin I.S., Litasov K.D., Shatskiy A., Safonov O.G., Golovin A.V., Ohtani E., Pokhilenko N.P. (2017) Experimental constraints on orthopyroxene dissolution in alkali carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and ascent. Chem. Geol.455, 44-55. 30. Shatskiy A., Litasov K.D., Sharygin I.S., Egonin I.A., Mironov A.M. Palyanov, Y.N., Ohtani E. (2016) The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900–1250°C and its relation to the partial melting of carbonated mantle. High Pressure Research.36(1), 23-41. 31. Shatskiy A., Litasov K.D., Sharygin I.S., Ohtani E. (2017) Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Research.45, 208-227. 32. Shatskiy A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., Chanyshev A.D., Sharygin I.S., Karmanov N.S., Ohtani E. (2017a) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. American Mineralogist.102(9), 1934-1946. 33. Smith E.M., Kopylova M.G., Frezzotti M.L., Afanasiev V.P. (2015) Fluid inclusions in Ebelyakh diamonds: Evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit. Lithos.216, 106-117. 34. Wood B.J., Holland T., Newton R.C., Kleppa O.J. (1980) Thermochemistry of jadeite-diopside pyroxenes. Geochim. Cosmochim. Acta.9(44), 1363-1371. 35. Wyllie P.J., Huang W. (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO–MgO–SiO2–CO2. Geology.3, 621-624. 36. Yaxley G.M., Brey G.P. (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineral.Petrol.146(5), 606-619.