Инд. авторы: Vorontsov A.A., Komaritsyna T.Y., Dril S.I., Dushkin E.P., Izokh A.E., Yarmolyuk V.V., Nikiforov A.V., Perfilova O.Y., Rizvanova N.G.
Заглавие: Article evolution of syenite magmas: insights from the geology, geochemistry and o-nd isotopic characteristics of the ordovician saibar intrusion, altai-sayan area, russia
Библ. ссылка: Vorontsov A.A., Komaritsyna T.Y., Dril S.I., Dushkin E.P., Izokh A.E., Yarmolyuk V.V., Nikiforov A.V., Perfilova O.Y., Rizvanova N.G. Article evolution of syenite magmas: insights from the geology, geochemistry and o-nd isotopic characteristics of the ordovician saibar intrusion, altai-sayan area, russia // Minerals. - 2021. - Vol.11. - Iss. 5. - EISSN 2075-163X.
Внешние системы: DOI: 10.3390/min11050473; РИНЦ: 46031847;
Реферат: eng: In this paper, we provide insight into the evolution of syenite magmas based on geological data and petrographic, geochemical, and O-Nd isotope parameters of rocks of the Saibar intrusion located within the Minusinsk Trough, Altay-Sayan area. The intrusive suite includes predominant syenites, few bodies of melanocratic and leucocratic nepheline syenites (foyaites), and granites. In addition, dykes of granites and mafic rocks are present. The U-Pb zircon age from the melanocratic foyaites was determined to be 457 ± 27 Ma. Examined rocks show fractionated light rare earth element patterns, normalized to chondrite, with (La/Sm)n varying from 4 to 9, and a weakly fractionated distribution of medium and heavy rare elements, with (Dy/Yb)n from 0.35 to 1.23 and (Sm/Yb)n from 0.63 to 2.62. The spidergram normalized to the primitive mantle shows negative Ba, Sr, Nb, Ta, Ti, and Eu anomalies (Eu* = 0.48–0.60) and positive Rb, Th, and U anomalies. The δ18O values vary within 6.3 to 10.2%, and εNd(t) from +4.1 to +5.0. We observe gradual transitions from syenites to foyaites. Assimilation by syenite magma of the host carbonate rocks was followed to transition from silica-saturated to silica-undersaturated conditions and removal of anorthite from the melt, which then led to nepheline. Granites of the main phase show depleted lithophile incompatible elements in comparison with syenites and foyaites. They originate via interaction of magmas at the marginal part (endocontact zone) of the intrusion, corresponding to north contact of the granites with the host felsic rocks. In comparison, the rock composition of granite dykes is enriched in lithophile incompatible elements, except for Zr, Hf, and Ti. These rocks are formed due to the differentiation of syenite magma without a significant effect of host rock assimilation. Mantle magmas must be used as parent magmas for syenites based on analysis of the formation model of other alkaline intrusions, which are similar in age to the Saibar intrusion. In the line of syenite intrusions of the Altai-Sayan province, the Saibar intrusion is no exception, and its origin is related to the evolution of mafic magmas that arose during the melting of the mantle under the influence of a mantle plume.
Ключевые слова: Saibar intrusion; russia; Ordovician magmatism; Minusinsk trough; fractionation; contamination; Altai-Sayan area; Alkaline magmas;
Издано: 2021
Цитирование: 1. Rocks, I. Classification, Nomenclature, Petrography; Bogatikov, O.A., Gon’shakova, V.I., Eds.; Nauka: Moscow, Russia, 1983; Volume 1, pp. 1–372. (In Russian) 2. Condie, K.C. Mantle Plumes and Their Record in Earth History; Cambridge University Press: Cambridge, UK, 2001; pp. 1–305. 3. Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; pp. 1–667. 4. Burke, K.; Dewey, J. Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks. J. Geol. 1973, 81, 406–433. [CrossRef] 5. Pirajno, F. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res. 2015, 27, 1181–1216. [CrossRef] 6. Yashina, R.M. Alkaline Magmatism in Orogenic Areas (Case of the Southern Periphery of the Siberian Craton); Nauka: Moscow, Russia, 1982; pp. 1–274. (In Russian) 7. Sheimann, Y.M.; Apeltsin, F.R.; Nechaeva, E.A. Alkaline Intrusions, Their Placement and Associated Mineralization; Gosgeoltekhizdat: Moscow, Russia, 1961; pp. 1–176. (In Russian) 8. Sheimann, Y.M. Essays on Deep Geology; Nedra: Moscow, Russia, 1968; pp. 1–232. (In Russian) 9. Litvinovsky, B.A.; Zanvilevich, A.N.; Burdukov, I.V.; Karmanov, N.S. Syenites as a product of fractional crystallization of alkaline-basaltic magma of the Oshurkovsky intrusion, Transbaikalia. Russ. Petrol. 1998, 6, 30–52. 10. Allen, C.M.; Chappell, B.W. Assosiation of I type granites with rift related alkali magmatism in central coastal Queensland, Australia. Geol. Soc. Am. Abstr. Programs 1992, 24, 43. 11. Lubala, R.T.; Frick, C.; Roders, J.H.; Walraven, F. Petrogenesis of syenites and granites of Schiel Alkaline complex, Northern Transvaal, South Africa. J. Geol. 1994, 102, 307–309. [CrossRef] 12. Huang, W.L.; Wyllie, P.J. Phase relationships of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. J. Geoph. Res. 1981, 86, 10515–10529. [CrossRef] 13. Brown, P.E.; Becker, S.M. Fractionation, hybridisation and magma-mixing in the Kialineq centre, East Greenland. Contrib. Mineral. Petrol. 1986, 92, 57–70. [CrossRef] 14. Sheppard, S. Hybridization of shoshonitic lamprophyre and calc-alkaline granite magma in the early Proterozoic Mt Bundey igneous suite, Northern Territory. Aust. J. Earth Sci. 1995, 42, 173–185. [CrossRef] 15. Barker, F.; Wones, D.R.; Sharp, W.N.; Desborough, G.A. The Pikes Peak batholith, Colorado front range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite. Precambrian Res. 1975, 2, 97–160. [CrossRef] 16. Dorias, M. Compositional variations in pyroxens and amphiboles of the Belkmap Moutain complex, New Hampshire: Evidens for origin of silica-saturated alkaline rocks. Am. Mineral. 1990, 75, 1092–1105. 17. Kröner, A.; Kovach, V.; Belousova, E.; Hegner, E.; Armstrong, R.; Dolgopolova, A.; Sun, M. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 2014, 25, 103–125. [CrossRef] 18. Sengör, A.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–306. [CrossRef] 19. Windley, B.F.; Alexeiev, D.V.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [CrossRef] 20. Coleman, R.G. Continental growth of North West China. Tectonics 1989, 8, 621–635. [CrossRef] 21. Kröner, A.; Hegner, E.; Lehmann, B.; Heinhorst, J.; Wingate, M.T.D.; Liu, D.Y.; Ermelov, P. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. Asian Earth Sci. 2008, 32, 118–130. [CrossRef] 22. Rytsk, E.Y.; Kovach, V.P.; Yarmolyuk, V.V.; Kovalenko, V.I. Structure and evolution of the continental crust in the Baikal Fold Region. Geotectonic 2007, 41, 440–464. [CrossRef] 23. Windley, B.F.; Kröner, A.; Guo, J.; Qu, G.; Li, Y.; Zhang, C. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. J. Geol. 2002, 110, 719–739. [CrossRef] 24. Yarmolyuk, V.V.; Kovalenko, V.I.; Kovach, V.P.; Rytsk, E.Y.; Kozakov, I.K.; Kotov, A.B.; Sal’nikova, E.B. Early Stages of the Paleoasian Ocean formation: Results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian-Cambrian complexes in the Central Asian fold belt. Dokl. Earth Sci. 2006, 411, 1184–1189. [CrossRef] 25. Yarmolyuk, V.V.; Kovalenko, V.I.; Kozlovskii, A.M.; Kovach, V.P.; Sal’nikova, E.B.; Kovalenko, D.V.; Kotov, A.B.; Kudryashova, E.A.; Lebedev, V.I.; Eenzhin, G. Crust-forming processes in the Hercynides of the Central Asian foldbelt. Petrology 2008, 16, 679–709. [CrossRef] 26. Yarmolyuk, V.V.; Kovach, V.P.; Kovalenko, V.I.; Salnikova, E.B.; Kozlovskii, A.M.; Kotov, A.B.; Yakovleva, S.Z.; Fedoseenko, A.M. Composition, sources, and mechanism of continental crust growth in the Lake Zone of the Central Asian Caledonides: I. Geological and geochronological data. Petrology 2011, 19, 55–78. [CrossRef] 27. Yarmolyuk, V.V.; Kuz’min, M.I.; Vorontsov, A.A. Convergent boundaries of the West Pacific type and their role in the formation of the Central Asian fold belt. Russ. Geol. Geophys. 2013, 54, 1427–1441. [CrossRef] 28. Yarmolyuk, V.V.; Kuz’min, M.I.; Ernst, R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci. 2014, 93, 158–179. [CrossRef] 29. Wang, Z.W.; Pei, F.P.; Xu, W.L.; Cao, H.H.; Wang, Z.J.; Zhang, J. Tectonic evolution of the eastern Central Asian Orogenic Belt: Evidence from zircon U–Pb–Hf isotopes and geochemistry of early Paleozoic rocks in Yanbian region, NE China. Gondwana Res. 2016, 38, 334–350. [CrossRef] 30. Liu, Y.; Li, W.; Feng, Z.; Wen, Q.; Neubauer, F.; Liang, C. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [CrossRef] 31. Zhao, G.; Wang, Y.; Huang, B.; Dong, Y.; Li, S.; Zhang, G.; Yu, S. Geological reconstructions of the East Asian blocks: From the breaking of Rodinia to the assembly of Pangea. Earth Sci. Rev. 2018, 186, 262–286. [CrossRef] 32. Vrublevskii, V.V.; Grinev, O.M.; Izokh, A.E.; Travin, A.V. Geochemistry, isotope triad (Nd–Sr–O), and40Ar–39Ar age of Paleozoic alkaline mafic intrusions of the Kuznetsk Alatau (by the example of the Belaya Gora pluton). Russ. Geol. Geophys. 2016, 57, 592–602. [CrossRef] 33. Vrublevskii, V.V. Sources and geodynamic setting of petrogenesis of the Middle Cambrian Upper Petropavlovka alkaline basic pluton (Kuznetsk Alatau, Siberia). Russ. Geol. Geophys. 2015, 56, 379–401. [CrossRef] 34. Vrublevskii, V.V.; Gertner, I.F.; Tishin, P.A.; Bayanova, T.B. Age range of zircon and sources of alkaline rocks Kurgusul intrusive, Kuznetsk Alatau: First U–Pb (Shrimp 2) Isotope and Sm–Nd Data. Dokl. Earth Sci. 2014, 459, 601–606. (In Russian) [CrossRef] 35. Vrublevskii, V.V.; Krupchatnikov, V.I.; Izokh, A.E.; Gertner, I.F. Alkaline Rocks and Carbonatites of Gorny Altai (Edelweiss complex): Indicator of Early Paleozoic Pluma Magmatism in the Central Asian Folding Belt. Russ. Geol. Geophys. 2012, 53, 945–963. [CrossRef] 36. Vrublevskii, V.V.; Izokh, A.E.; Polyakov, G.V.; Gertner, I.F.; Yudin, D.S.; Krupchatnikov, V.I. Early Paleozoic alkaline magmatism of Gorny Altai:40Ar-39Ar-Geochronological evidence of the Edelweiss complex. Dokl. Earth Sci. 2009, 427, 96–100. [CrossRef] 37. Makarenko, N.A.; Kotel’nikov, A.D. The Kashpar Cambrian-Ordovik gabbro-diorite-quartzmontsodiorite-syenite Complex-New Petrography Department on the Eastern Slope of the Kuznetsk Alatau. Geosph. Stud. 2018, 2, 52–71. (In Russian) 38. Vrublevskii, V.V.; Gertner, I.F.; Gutiérrez-Alonso, G.; Hofmann, M.; Grinev, O.M.; Tishin, P.A. Isotope (U-Pb, Sm–Nd, Rb–Sr) geochronology of alkaline basic plutons of the Kuznetsk Alatau. Russ. Geol. Geophys. 2014, 55, 1264–1277. [CrossRef] 39. Vrublevskii, V.V.; Kotel’nikov, A.D.; Rudnev, S.N.; Krupchatnikov, V.I. Evolution of the Paleozoic granitoid magmatism in the Kuznetsk Alatau: New geochemical and U-Pb (SHRIMP-II) isotope data. Russ. Geol. Geophys. 2016, 57, 225–246. [CrossRef] 40. Vrublevskii, V.V.; Gertner, I.F.; Gutiérrez-Alonso, G.; Hofmann, M.; Grinev, O.M.; Mustafaev, A. Multiple intrusion stages and mantle sources of the Paleozoic Kuznetsk Alatau alkaline province, Southern Siberia: Geochemistry and Permian U–Pb, Sm–Nd ages in the Goryachegorsk ijolite-foyaite intrusion. Int. Geol. Rev. 2020, 1–17. [CrossRef] 41. Mustafayev, A.A.; Gertner, I.F.; Serov, P.A. Features of geology and composition of rocks from the alkaline-gabbroic University intrusion (NE Kuznetsk Alatau ridge, Siberia). Earth Environ. Sci. 2017, 319, 012026. 42. Mustafayev, A.A.; Gertner, I.F.; Ernst, R.E.; Serov, P.A.; Kolmakov, Y.V. The Paleozoic-Aged University Foidolite-Gabbro Pluton of the Northeastern Part of the Kuznetsk Alatau Ridge, Siberia: Geochemical Characterization, Geochronology, Petrography and Geophysical Indication of Potential High-Grade Nepheline Ore. Minerals 2020, 10, 1128. [CrossRef] 43. Mustafaev, A.; Gertner, I. Isotope-geochemical (Sm–Nd, Rb–Sr, REE, HFSE) composition of the University foidolite-gabbro pluton, Kuznetsk Alatau ridge, Siberia. Vestn. St. Petersburg Univer. Earth Sci. 2020, 65, 1–33. (In Russian) 44. Kononova, V.A. Jakupirangite-Urtite Series of Alkaline Rocks; Nauka: Moscow, Russia, 1976; pp. 1–215. (In Russian) 45. Andreeva, E.D.; Kononova, V.A.; Sveshnikova, E.V.; Yashina, R.M. Alkaline rocks. In Igneous Rocks; Bogatikov, O.A., Kononova, V.A., Borsuk, A.M., Gon’shakova, V.I., Kovalenko, V.I., Laz’ko, E.E., Sharkov, E.V., Eds.; Nauka: Moscow, Russia, 1984; Volume 2, pp. 1–415. (In Russian) 46. Ernst, R.E.; Rodygin, S.A.; Grinev, O.M. Age correlation of Large Igneous Provinces with Devonian biotic crises. Glob. Planet. Chang. 2020, 185, 103097. [CrossRef] 47. Perfilova, O.Y.; Makhlaev, M.L.; Sidoras, S.D. Ordovician volcanic-plutonic association in structures of the folded surrounding of the Minusa depression. Russ. Lithosphere 2004, 3, 137–152. (In Russian) 48. Rudnev, S.N. Early Paleozoic Granitoid Magmatism of the Altai-Sayan Folded Region and the Lake Zone of Western Mongolia; SB RAS: Novosibirsk, Russia, 2013; pp. 1–300. (In Russian) 49. Kosorukov, A.P. Devonian alkaline-syenite complex of the Sydo-Erbinsk depression and its mountain frame. In Magmatic Complexes of Folded Regions of Southern Siberia; Polyakov, G.V., Ed.; Nauka: Novosibirsk, Russia, 1981; Volume 509, pp. 128–157. (In Russian) 50. Vologdin, A.G. Geological research in 1924 in the area of the town of Saybar and Bolshe-Telek Baytak. Russia. News Geol. Comm. 1925, 44, 18–43. (In Russian) 51. Luchitsky, I.V. Volcanism and Tectonics of the Devonian Depressions of the Minusinsk Intermountain Trough; Academy of Sciences of the USSR: Moscow, Russia, 1960; pp. 1–276. (In Russian) 52. Saranchina, G.M. Alkaline rocks of the Saybar intrusion (Western Siberia, Krasnoyarsk Region). Uchenye Zap. LSU 1940, 45, 253–287. (In Russian) 53. Fedoseev, G.S.; Polyakov, G.V. Intrusions of granites and syenites of the eastern framing of the Sydo-Erbinsk and South-Minusinsk depressions. In Middle Paleozoic Intrusions of Granites and Syenites of the Kuznetsk Alatau and the North-Western Part of the Eastern Sayan; Kuznetsov, Y.A., Ed.; Nauka: Novosibirsk, Russia, 1974; Volume 177, pp. 148–207. (In Russian) 54. Fedorov, E.E. To the question of syenite intrusion of the Tubino-Sisimsky region (Krasnoyarsk Territory). Mater. VSEGEI (Common Ser.) 1948, 8, 106–112. (In Russian) 55. Edelstein, Y.S. Geological outline of the Minusinsk depression and adjacent parts of the Kuznetsk Alatau and East Sayan. In Essays on the Geology of Siberia; Obruchev, V.A., Ed.; Publishing House of the USSR Academy of Sciences: Leningrad, Russia, 1932; pp. 1–59. (In Russian) 56. Kostyuk, V.P.; Guletskaya, E.S. To mineralogy of the Saybar intrusion (Eastern Sayan). Russ. Geol. Geophys. 1967, 7, 43–50. (In Russian) 57. Krogh, T.E. A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 1973, 37, 485–494. [CrossRef] 58. Ludwig, K.R. PBDAT—A Computer Program for Processing Pb-U-Th Isotope Data, Version 1.22. In Open-File Report; United States Geological Survey: Reston, CF, USA, 1991; Volume 38, pp. 88–542. 59. Ludwig, K.R. User’s Manual for Isoplot/Ex, Version 2.10. In A Geochronological Toolkit for Microsoft Excel; Berkley Geochronology Center Special Publication: Berkeley, CA, USA, 1999; Volume 1, pp. 1–46. 60. Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [CrossRef] 61. Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a 2-Stage Model. Earth Plan. Sci. Lett. 1975, 26, 207–221. [CrossRef] 62. Afonin, V.P.; Gunicheva, T.N.; Piskunova, L.F. X-Ray Fluorescence Silicate Analysis; Nauka: Novosibirsk, Russia, 1984; pp. 1–228. (In Russian) 63. Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. [CrossRef] 64. Richard, P.; Shimizu, N.; Allègre, C.J.143Nd/146Nd a natural tracer: An Application to Oceanic Basalts. Earth Plan. Sci. Lett. 1976, 31, 269–278. [CrossRef] 65. Pin, C.; Briot, D.; Bassin, C.; Poitrasson, F. Concominant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta 1994, 298, 209–217. [CrossRef] 66. Makishima, A.; Nagender, B.; Nakamura, E. New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS. Geochem. J. 2008, 42, 237–246. [CrossRef] 67. Yang, Y.-H.; Chu, Z.Y.; Wu, F.-Y.; Xia, L.-W.; Yang, J.-H. Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. J. Anal. At. Spectrom. 2010, 26, 1237–1244. [CrossRef] 68. Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Kunimaru, T. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [CrossRef] 69. Sharpenok, L.N.; Kostin, A.E.; Kukharenko, E.A. TAS-diagram the sum of alkalis-silica for chemical classification and diagnostics of plutonic rocks. Reg. Geol. Metallog. 2013, 56, 40–50. (In Russian) 70. Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [CrossRef] 71. Frost, B.R.; Frost, C.D. A geochemical classifcation for feldspathic igneous rocks. J. Petrol. 2008, 49, 1955–1969. [CrossRef] 72. Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes Basins. In Magmatism in the Ocean Basins; Special Publications 42; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London: London, UK, 1989; pp. 313–345. 73. King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [CrossRef] 74. Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Rudnick, R.L., Eds.; Elsevier Ltd.: Oxford, UK, 2003; Volume 3, pp. 1–56. 75. Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P. Sources of Phanerozoic granitoids of Central Asia: Sm-Nd isotope data. Geochem. Int. 1996, 8, 628–640. 76. Kovalenko, V.I.; Yarmolyuk, V.V.; Kozakov, I.K.; Kovach, V.P.; Kotov, A.B.; Salnikova, E.B. Sm-Nd isotopic provinces of the Earth’s crust in Central Asia. Dokl. Earth Sci. 1996, 348, 220–222. (In Russian) 77. Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. Asian Earth Sci. 2004, 23, 605–627. [CrossRef] 78. Schairer, J.F.; Yoder, H.S., Jr. The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. Am. J. Sci. 1960, 258, 273–283. 79. Lykhin, D.A.; Yarmolyuk, V.V.; Vorontsov, A.A. Age, composition and sources of rocks and ores of the Okunevsky fluorite-leukophane deposit (Western Sayan): To assess the contribution of magmatism to the formation of ore mineralization. Geol. Ore Depos. 2019, 61, 37–61. (In Russian) [CrossRef] 80. Vorontsov, A.A.; Perfilova, O.Y.; Kruk, N.N. Geodynamic setting, structure, and composition of continuous trachybasalt-trachiandesite-rhyolite series in the northe of Altai-Sayan area: The role of crust-mantle interaction in continental magma formation. Russ. Geol. Geophys. 2018, 59, 1640–1659. [CrossRef] 81. Vorontsov, A.A.; Perfilova, O.Y.; Kruk, N.N.; Tarasyuk, A.S. Late Ordovician volcanism of the northern part of Altai-Sayan area and its geodynamic nature. Dokl. Earth Sci. 2019, 485, 347–354. [CrossRef] 82. Yarmolyuk, V.V.; Kovalenko, V.I. Deep geodynamics and mantle plumes: Their role in the formation of the Central Asian fold belt. Russ. Petrol. 2003, 11, 504–531. 83. Berzin, N.A.; Kungurtsev, L.V. Geodynamic interpretation of geological complexes of the Altai-Sayan region. Russ. Geol. Geophys. 1996, 37, 63–81.