Инд. авторы: | Dudka A.P., Belyanchikov M.A., Thomas V.G., Bedran Z.V., Gorshunov B.P. |
Заглавие: | Localization of Small Impurities of Water and Carbon Dioxide in Channels of the Structure of Natural Cordierite |
Библ. ссылка: | Dudka A.P., Belyanchikov M.A., Thomas V.G., Bedran Z.V., Gorshunov B.P. Localization of Small Impurities of Water and Carbon Dioxide in Channels of the Structure of Natural Cordierite // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. - 2020. - Vol.14. - Iss. 4. - P.718-721. - ISSN 1027-4510. - EISSN 1819-7094. |
Внешние системы: | DOI: 10.1134/S1027451020040035; РИНЦ: 45404662; WoS: 000568081700013; |
Реферат: | eng: An accurate X-ray diffraction study of cordierite mineral, the simplified chemical formula of which is Mg2Al4Si5O18, is performed. The main octahedral position contains magnesium, iron, and aluminum ions, as well as traces of manganese. Alkaline cations are localized within large channels formed by six AlO(4)and SiO(4)tetrahedra at the levelz= 0. Water and carbon-dioxide molecules are located within the same vertical channels as sodium ions but at the levelz= 1/4; they alternate from one cell to another. The CO(2)molecule is elongated along theaaxis of the cell and rotates around the central carbon atom (0, 0, 0.25) by an angle of similar to 10 degrees. Several orientations of the water molecule are observed. The mutual ordering of the molecules is hindered in the range 91-295 K due to intense interorientational transitions and the duration of residence of the water molecules in incoherent intermediate states. |
Ключевые слова: | REDUCED DATA; X-RAY; calibration of experimental facilities; structure of minerals; X-ray analysis; localization of hydrogen atoms; water molecules; cordierite; ferroelectricity; CALIBRATION; |
Издано: | 2020 |
Физ. характеристика: | с.718-721 |
Цитирование: | 1. B. P. Gorshunov, V. I. Torgashev, E. S. Zhukova, et al., Nat. Commun. 7, 12842 (2016). DOI: 10.1038/ncomms12842 2. A. I. Kolesnikov, G. F. Reiter, N. Choudhury, et al., Phys. Rev. Lett. 116, 167802 (2016). DOI: 10.1103/PhysRevLett.116.167802 3. A. P. Dudka, I. A. Verin, and E. S. Smirnova, Crystallogr. Rep. 61, 692 (2016). DOI: 10.1134/S1063774516040052 4. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.38.41 (Rigaku Corporation, Oxford, UK, 2015). 5. A. Dudka, J. Appl. Crystallogr. 43 (6), 1440 (2010). DOI: 10.1107/S0021889810037131 6. A. P. Dudka, Crystallogr. Rep. 60, 601 (2015). DOI: 10.1134/S1063774515040100 7. A. P. Dudka, Crystallogr. Rep. 50, 1068 (2005). DOI: 10.1134/1.2132419 8. P. J. Becker and P. Coppens, Acta Crystallogr., Sect. A 30, 129 (1974). DOI: 10.1107/S0567739474000337 9. A. Dudka, J. Appl. Crystallogr. 43, 27 (2010). DOI: 10.1107/S0021889809051577 10. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007). DOI: 10.1107/S0021889807010618 11. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5), 345 (2014). 12. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian]. 13. J. P. Cohen, F. K. Ross, and G. V. Gibbs, Am. Mineral. 62, 67 (1977). 14. B. A. Kolesov, J. Struct. Chem. 47 (1), 21 (2006). DOI: 10.1007/s10947-006-0261-4 15. A. P. Dudka, Crystallogr. Rep. 47, 145 (2002). DOI: 10.1134/1.1446924 16. K. N. Trueblood, H. B. Bürgi, H. Burzlaff, et al., Acta Crystallogr. A 52, 770 (1996). DOI: 10.1107/S0108767396005697 17. M. A. Belyanchikov, M. Savinov, Z. V. Bedran, et al., IFBME Proc. 77, 7 (2019). |