Инд. авторы: Seryotkin Y.V., Dementiev S.N., Likhacheva A.Y.
Заглавие: Crystal–fluid interaction: the evolution of stilbite structure at high pressure
Библ. ссылка: Seryotkin Y.V., Dementiev S.N., Likhacheva A.Y. Crystal–fluid interaction: the evolution of stilbite structure at high pressure // Physics and Chemistry of Minerals. - 2021. - Vol.48. - Iss. 1. - Art.4. - ISSN 0342-1791. - EISSN 1432-2021.
Внешние системы: DOI: 10.1007/s00269-020-01131-5; РИНЦ: 45009964;
Реферат: eng: Natural stilbite, Ca4.00Na1.47(H2O)30[Al9.47Si26.53O72], space group F2/m, a = 13.5978(3), b = 18.2804(4), c = 17.8076(4) Å, β = 90.685(2)°, V = 4426.18(17) Å3, Z = 2, has been studied by single-crystal X-ray diffraction method at ambient conditions and under compression in penetrating (water-bearing) and non-penetrating (paraffin) media. In water-containing medium during the first compression stage (below 1 GPa) the pressure-induced hydration effect manifests in the additional occupation of partly vacant H2O positions; above 1 GPa the H2O position, which is vacant at ambient pressure and not linked to cations, becomes occupied. Above 2.6 GPa the composition of stilbite remains almost constant; apparently no further hydration is possible. The compressibility of stilbite in paraffin is expectedly higher compared to that in penetrating medium. The cations coordination changes mainly through minor shifts of water positions and some re-distribution of their occupancy. Above 3 GPa the structure abruptly contracts along the b axis; the structure symmetry is reduced to triclinic. The decompression experiments show full reversibility of structural changes on pressure release.
Ключевые слова: structure evolution; Stilbite; Crystal-fluid interaction; single-crystal X-ray diffraction; high pressure;
Издано: 2021
Физ. характеристика: 4
Цитирование: 1. Angel RJ, Gonzalez-Platas J (2013) ABSORB-7 and ABSORB-GUI for single-crystal absorption corrections. J Appl Cryst 46:252–254. 10.1107/S0021889812048431 DOI: 10.1107/S0021889812048431 2. Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419. 10.1515/zkri-2013-1711 DOI: 10.1515/zkri-2013-1711 3. Arletti R, Quartieri S, Vezzalini G (2010) Elastic behavior of zeolite boggsite in silicon oil and aqueous medium: a case of high-pressure-induced over-hydration. Am Mineral 95:1247–1256. 10.2138/am.2010.3482 DOI: 10.2138/am.2010.3482 4. Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. In: Bish DL, Ming DW (eds) Natural zeolites. Miner Soc America, Washington, pp 1–67 5. Artioli G, Smith JV, Kvick Å (1985) Multiple hydrogen positions in the zeolite brewsterite, (Sr0.95, Ba0.05)Al2Si6O16 5H2O. Acta Crystallogr C 41:492–497. 10.1107/S0108270185004401 DOI: 10.1107/S0108270185004401 6. Barrer RM, Fender BEF (1961) The diffusion and sorption of water in zeolites—I. Sorption. J Phys Chem Solids 21:12–24. 10.1016/0022-3697(61)90206-2 DOI: 10.1016/0022-3697(61)90206-2 7. Boehler R (2006) New diamond cell for single-crystal X-ray diffraction. Rev Sci Instrum 77:115103. 10.1063/1.2372734 DOI: 10.1063/1.2372734 8. Breck DW (1974) Zeolite molecular sieves. John Wiley & Sons, New York 9. Carey JW, Bish DL (1996) Equilibrium in the clinoptilolite-H2O system. Am Mineral 81:952–962 DOI: 10.2138/am-1996-7-817 10. Drebushchak VA, Dementiev SN, SeryotkinYuV, (2012) Phase transition at thermal dehydration in stilbite. J Therm Anal Calorim 107:1293–1299. 10.1007/s10973-011-1608-4 DOI: 10.1007/s10973-011-1608-4 11. Dyer A, Faghihian H (1998) Diffusion in heteroionic zeolites: part 2: diffusion of water in heteroionic stilbites. Microporous Mesoporous Mater 21:39–44. 10.1016/S1387-1811(97)00036-X DOI: 10.1016/S1387-1811(97)00036-X 12. Fridriksson T, Bish DL, Bird DK (2003) Hydrogen-bonded water in laumontite I: X-ray powder diffraction study of water site occupancy and structural changes in laumontite during room-temperature isothermal hydration/dehydration. Am Mineral 88:277–287. 10.2138/am-2003-2-304 DOI: 10.2138/am-2003-2-304 13. Gabuda SP, Kozlova SG (1995) Guest-guest interaction and phase transitions in the natural zeolite laumontite. J Incl Phenom Mol Recognit Chem 22:1–13. 10.1007/BF00706494 DOI: 10.1007/BF00706494 14. Galli E (1971) Refinement of the crystal structure of stilbite. Acta Crystallogr B 27:833–841. 10.1107/S056774087100298X DOI: 10.1107/S056774087100298X 15. Gatta GD, Lee Y (2007) Anisotropic elastic behaviour and structural evolution of zeolite phillipsite at high pressure: a synchrotron powder diffraction study. Microporous Mesoporous Mater 105:239–250. 10.1016/j.micromeso.2007.01.031 DOI: 10.1016/j.micromeso.2007.01.031 16. Gatta GD, Lotti P, Tabacchi G (2018) The effect of pressure on open-framework silicates: elastic behaviour and crystal–fluid interaction. Phys Chem Miner 45:115–138. 10.1007/s00269-017-0916-z DOI: 10.1007/s00269-017-0916-z 17. Gottardi G, Galli E (1985) Natural zeolites. Springer-Verlag, Berlin DOI: 10.1007/978-3-642-46518-5 18. Koyama K, Takeuchi Y (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z Kristallogr 145:216–239. 10.1524/zkri.1977.145.3-4.216 DOI: 10.1524/zkri.1977.145.3-4.216 19. Lee Y, Hriljac JA, Vogt T, Parise JB, Artioli G (2001) First structural investigation of a super-hydrated zeolite. J Am Chem Soc 123:12732–12733. 10.1021/ja017098h DOI: 10.1021/ja017098h 20. Lee Y, Vogt T, Hriljac JA, Parise JB, Artioli G (2002) Pressure-induced volume expansion of zeolites in the natrolite family. J Am Chem Soc 124:5466–5475. 10.1021/ja0255960 DOI: 10.1021/ja0255960 21. Lee Y, Hriljac JA, Studer A, Vogt T (2004) Anisotropic compression of edingtonite and thomsonite to 6 GPa at room temperature. Phys Chem Miner 31:22–27. 10.1007/s00269-003-0330-6 DOI: 10.1007/s00269-003-0330-6 22. Likhacheva AYu, Seryotkin YuV, Manakov AYu, Goryainov SV, Ancharov AI, Sheromov MA (2007) Pressure-induced over-hydration of thomsonite: a synchrotron powder diffraction study. Am Mineral 92:1610–1615. 10.2138/am.2007.2566 DOI: 10.2138/am.2007.2566 23. Lotti P, Gatta GD, Merlini M, Liermann H-P (2015) High-pressure behavior of synthetic mordenite-Na: an in situ single-crystal synchrotron X-ray diffraction study. Z Kristallogr 230:201–211. 10.1515/zkri-2014-1796 DOI: 10.1515/zkri-2014-1796 24. Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. In: Bish DL, Ming DW (eds) Natural zeolites. Miner Soc America, Washington, pp 453–518 DOI: 10.1515/9781501509117-016 25. Piermarini GJ, Block S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the R 1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774–2780. 10.1063/1.321957 DOI: 10.1063/1.321957 26. Quartieri S, Vezzalini G (1987) Crystal chemistry of stilbites: structure refinements of one normal and four chemically anomalous samples. Zeolites 7:163–170. 10.1016/0144-2449(87)90080-7 DOI: 10.1016/0144-2449(87)90080-7 27. Rashchenko SV, Seryotkin YV, Bakakin VV (2012a) An X-ray single crystal study of alkaline cations influence on laumontite hydration ability: I. Humidity-induced hydration of Na,K-rich laumontite. Microporous Mesoporous Mater 151:93–98. 10.1016/j.micromeso.2011.11.009 DOI: 10.1016/j.micromeso.2011.11.009 28. Rashchenko SV, Seryotkin YV, Bakakin VV (2012b) An X-ray single-crystal study of alkaline cations influence on laumontite hydration ability: II. Pressure-induced hydration of Na, K-rich laumontite. Microporous Mesoporous Mater 159:126–131. 10.1016/j.micromeso.2012.04.029 DOI: 10.1016/j.micromeso.2012.04.029 29. Rigaku Oxford Diffraction (2016) CrysAlisPro software system. Rigaku Corporation, Oxford 30. Schlenker JL, Pluth JJ, Smith JV (1977) Refinement of the crystal structure of brewsterite, Ba0.5Sr1.5Al4Si12O32 10H2O. Acta Crystallogr B 33:2907–2910. 10.1107/S0567740877009765 DOI: 10.1107/S0567740877009765 31. Seryotkin YuV (2015) Influence of content of pressure-transmitting medium on structural evolution of heulandite: single-crystal X-ray diffraction study. Microporous Mesoporous Mater 214:127–135. 10.1016/j.micromeso.2015.05.015 DOI: 10.1016/j.micromeso.2015.05.015 32. Seryotkin YuV (2016) High-pressure behavior of HEU-type zeolites: X-ray diffraction study of clinoptilolite-Na. Microporous Mesoporous Mater 235:20–31. 10.1016/j.micromeso.2016.07.048 DOI: 10.1016/j.micromeso.2016.07.048 33. Seryotkin YuV (2019) Evolution of the brewsterite structure at high pressure: a single-crystal X-ray diffraction study. Microporous Mesoporous Mater 276:167–172. 10.1016/j.micromeso.2018.09.030 DOI: 10.1016/j.micromeso.2018.09.030 34. Seryotkin YuV, Bakakin VV (2019) Structure of K, Na-exchanged stellerite zeolite and its evolution under high pressure. J Struct Chem 60:1612–1621. 10.1134/S0022476619100068 DOI: 10.1134/S0022476619100068 35. Seryotkin YuV, Bakakin VV, Likhacheva AY, Rashchenko SV (2012) High-pressure diffraction study of zeolites stilbite and stellerite. J Struct Chem 53:26–34. 10.1134/S0022476612070049 DOI: 10.1134/S0022476612070049 36. Sheldrick G (2015) SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. 10.1107/S2053273314026370 DOI: 10.1107/S2053273314026370 37. Slaughter M (1970) Crystal structure of stilbite. Am Mineral 55:387–397 38. Xu Z, Stebbins JF (1998) Oxygen site exchange kinetics observed with solid state NMR in a natural zeolite. Geochim Cosmochim Acta 62:1803–1809. 10.1016/S0016-7037(98)00095-7 DOI: 10.1016/S0016-7037(98)00095-7