Инд. авторы: Klimovskikh I.I., Estyunin D., Eremeev S.V., Filnov S.O., Koroleva A., Shevchenko E., Rybkin A.G., Rusinov I.P., Tereshchenko O.E., Kokh K.A., Shikin A.M., Chulkov E.V., Otrokov M.M., Echenique P.M., Voroshnin V., Blanco-rey M., Hoffmann M., Ernst A., Aliev Z.S., Amiraslanov I.R., Abdullayev N.A., Mamedov N.T., Babanly M.B., Zverev V.N., Kimura A., Petaccia L., Di S.G.
Заглавие: Tunable 3d/2d magnetism in the (mnbi2te4)(bi2te3) m topological insulators family
Библ. ссылка: Klimovskikh I.I., Estyunin D., Eremeev S.V., Filnov S.O., Koroleva A., Shevchenko E., Rybkin A.G., Rusinov I.P., Tereshchenko O.E., Kokh K.A., Shikin A.M., Chulkov E.V., Otrokov M.M., Echenique P.M., Voroshnin V., Blanco-rey M., Hoffmann M., Ernst A., Aliev Z.S., Amiraslanov I.R., Abdullayev N.A., Mamedov N.T., Babanly M.B., Zverev V.N., Kimura A., Petaccia L., Di S.G. Tunable 3d/2d magnetism in the (mnbi2te4)(bi2te3) m topological insulators family // npj Quantum Materials. - 2020. - Vol.5. - Iss. 1. - Art.54. - EISSN 2397-4648.
Внешние системы: DOI: 10.1038/s41535-020-00255-9; РИНЦ: 45446541;
Реферат: eng: Feasibility of many emergent phenomena that intrinsic magnetic topological insulators (TIs) may host depends crucially on our ability to engineer and efficiently tune their electronic and magnetic structures. Here we report on a large family of intrinsic magnetic TIs in the homologous series of the van der Waals compounds (MnBi2Te4)(Bi2Te3)m with m = 0, ⋯, 6. Magnetic, electronic and, consequently, topological properties of these materials depend strongly on the m value and are thus highly tunable. The antiferromagnetic (AFM) coupling between the neighboring Mn layers strongly weakens on moving from MnBi2Te4 (m = 0) to MnBi4Te7 (m = 1) and MnBi6Te10 (m = 2). Further increase in m leads to change of the overall magnetic behavior to ferromagnetic (FM) one for (m = 3), while the interlayer coupling almost disappears. In this way, the AFM and FM TI states are, respectively, realized in the m = 0, 1, 2 and m = 3 cases. For large m numbers a hitherto-unknown topologically nontrivial phase can be created, in which below the corresponding critical temperature the magnetizations of the non-interacting 2D ferromagnets, formed by the MnBi2Te4 building blocks, are disordered along the third direction. The variety of intrinsic magnetic TI phases in (MnBi2Te4)(Bi2Te3)m allows efficient engineering of functional van der Waals heterostructures for topological quantum computation, as well as antiferromagnetic and 2D spintronics.
Издано: 2020
Физ. характеристика: 54
Цитирование: 1. Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z. & Zhang, S.-C. Quantum anomalous Hall effect in Hg1−yMn yTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008). 2. He, K., Wang, Y. & Xue, Q.-K. Quantum anomalous Hall effect. Natl Sci. Rev. 1, 38–40 (2014). 3. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). 4. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015). 5. Feng, Y. et al. Observation of the zero Hall plateau in a quantum anomalous Hall insulator. Phys. Rev. Lett. 115, 126801 (2015). 6. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019). 7. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018). 8. Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019). 9. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). 10. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018). 11. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). 12. Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012). 13. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010). 14. Henk, J. et al. Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3. Phys. Rev. Lett. 108, 206801 (2012). 15. Hor, Y. S. et al. Development of ferromagnetism in the doped topological insulator Bi2−xMn xTe3. Phys. Rev. B 81, 195203 (2010). 16. Shikin, A. M. et al. Signatures of in-plane and out-of-plane magnetization generated by synchrotron radiation in magnetically doped and pristine topological insulators. Phys. Rev. B 97, 245407 (2018). 17. Eremeev, S. V., Men'shov, V. N., Tugushev, V. V., Echenique, P. M. & Chulkov, E. V. Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface. Phys. Rev. B 88, 144430 (2013). 18. Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513 EP – (2016). 19. Otrokov, M. M. et al. Magnetic extension as an efficient method for realizing the quantum anomalous Hall state in topological insulators. JETP Lett. 105, 297–302 (2017). 20. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017). 21. Hirahara, T. et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Lett. 17, 3493–3500 (2017). 22. Eremeev, S. V., Otrokov, M. M. & Chulkov, E. V. New universal type of interface in the magnetic insulator/topological insulator heterostructures. Nano Lett. 18, 6521–6529 (2018). 23. Rienks, E. D. L. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019). 24. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010). 25. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). 26. Otrokov, M. M. et al. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019). 27. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019). 28. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019). 29. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019). 30. Peng, Y. & Xu, Y. Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators. Phys. Rev. B 99, 195431 (2019). 31. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020). 32. Liu, C. et al. Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020). 33. Zhang, J., Liu, Z. & Wang, J. In-plane magnetic-field-induced quantum anomalous hall plateau transition. Phys. Rev. B 100, 165117 (2019). 34. Zhang, J. et al. Dynamical magnetoelectric effect in antiferromagnetic insulator Mn2Bi2Te5. Preprint at https://arxiv.org/abs/1906.07891 (2019). 35. Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius insulator and higher-order topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020). 36. Estyunin, D. A. et al. Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4. APL Mater. 8, 021105 (2020). 37. Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019). 38. Aliev, Z. S. et al. Novel ternary layered manganese bismuth tellurides of the MnTe–Bi2Te3 system: synthesis and crystal structure. J. Alloy. Compd. 789, 443–450 (2019). 39. Sun, H. et al. Rational design principles of the quantum anomalous Hall effect in superlatticelike magnetic topological insulators. Phys. Rev. Lett. 123, 096401 (2019). 40. Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020). 41. Wu, J. et al. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 5, eaax9989 (2019). 42. Vidal, R. C. et al. Topological electronic structure and intrinsic magnetization in MnBi4Te7: a Bi2Te3 derivative with a periodic Mn sublattice. Phys. Rev. X 9, 041065 (2019). 43. Yan, J.-Q. et al. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals. Phys. Rev. Mater. 4, 054202 (2020). 44. Hu, C. et al. Realization of an intrinsic, ferromagnetic axion insulator in MnBi8Te13. Preprint at https://arxiv.org/abs/1910.12847 (2019). 45. Liang, Z. et al. Mapping the Dirac fermions in intrinsic antiferromagnetic topological insulators (MnBi2Te4)(Bi2Te3) n (n = 0, 1). Preprint at https://arxiv.org/abs/2001.00866 (2020). 46. Shikin, A. M. et al. Electronic and spin structure of the topological insulator Bi2Te2.4Se0.6. Phys. Rev. B 89, 125416 (2014). 47. Bansil, A., Lin, H. & Das, T. Colloquium: topological band theory. Rev. Mod. Phys. 88, 021004 (2016). 48. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). 49. Fang, C., Gilbert, M. J. & Bernevig, B. A. Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 88, 085406 (2013). 50. Papagno, M. et al. Multiple coexisting Dirac surface states in three-dimensional topological insulator PbBi6Te10. ACS Nano 10, 3518–3524 (2016). 51. Jo, N. H. et al. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10. Preprint at https://arxiv.org/abs/1910.14626 (2019). 52. Iwasawa, H. et al. Development of laser-based scanning μ-arpes system with ultimate energy and momentum resolutions. Ultramicroscopy 182, 85–91 (2017). 53. Gordon, K. N. et al. Strongly gapped topological surface states on protected surfaces of antiferromagnetic MnBi4Te7 and MnBi6Te10. Preprint at https://arxiv.org/abs/1910.13943 (2019). 54. Xu, L. X. et al. Persistent gapless surface states in MnBi2Te4/Bi2Te3 superlattice antiferromagnetic topological insulator. Preprint at https://arxiv.org/abs/1910.11014 (2019). 55. Hu, Y. et al. Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures. Phys. Rev. B 101, 161113 (2020). 56. Wu, X. et al. Distinct topological surface states on the two terminations of MnBi4Te7. Phys. Rev. X 10, 031013 (2020). 57. Ma, X.-M. et al. Hybridization-induced gapped and gapless states on the surfaces of magnetic topological insulators. Preprint at https://arxiv.org/abs/1912.13237 (2019). 58. Shikin, A. M. et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/2004.04802 (2020). 59. Eremeev, S. V. et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat. Commun. 3, 635 (2012). 60. Wu, J. et al. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal. Adv. Mater. 32, 2001815 (2020). 61. Petaccia, L. et al. BaD ElPh: a 4 m normal-incidence monochromator beamline at Elettra. Nucl. Instrum. Methods Phys. Res. A 606, 780–784 (2009). 62. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). 63. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). 64. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). 65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 66. Koelling, D. D. & Harmon, B. N. A technique for relativistic spin-polarised calculations. J. Phys. C 10, 3107 (1977). 67. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). 68. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements h-pu. J. Chem. Phys. 132, 154104 (2010). 69. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). 70. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 44, 943–954 (1991). 71. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998). 72. Eremeev, S. V., Otrokov, M. M. & Chulkov, E. V. Competing rhombohedral and monoclinic crystal structures in MnP n 2 C h 4 compounds: an ab-initio study. J. Alloy. Compd. 709, 172–178 (2017). 73. Wimmer, E., Krakauer, H., Weinert, M. & Freeman, A. J. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24, 864–875 (1981). 74. Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767 (1997). 75. Shick, A. B., Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769 (1999). 76. Anisimov, V. I., Solovyev, I. V., Korotin, M. A., Czyżyk, M. T. & Sawatzky, G. A. Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16929–16934 (1993).