Инд. авторы: Kuryaeva R.G.
Заглавие: Unexpectedly high compressibility of na6al2si6o18 glass with a large excess of na2o relative to al2o3 (na2o/al2o3=3) in the pressures range up to 6.0 gpa
Библ. ссылка: Kuryaeva R.G. Unexpectedly high compressibility of na6al2si6o18 glass with a large excess of na2o relative to al2o3 (na2o/al2o3=3) in the pressures range up to 6.0 gpa // Journal of Non-Crystalline Solids. - 2021. - Vol.553. - Art.120495. - ISSN 0022-3093.
Внешние системы: DOI: 10.1016/j.jnoncrysol.2020.120495; РИНЦ: 45204957;
Реферат: eng: The refractive index and the relative changes in the density (compressibility) for Na6Al2Si6O18 glass, with the ratio [Na2O]/([Na2O]+[Al2O3])=0.75, in the pressure range up to 6.0 GPa were obtained using a polarization-interference microscope, an apparatus with diamond anvils and the theory of photoelasticity. The experimentally obtained compressibility, (d-d0)/d, of Na6Al2Si6O18 glass is higher than one would expect from the glass with a large excess of Na2O relative to Al2O3 (Na2O/Al2O3=3). This phenomenon is discussed in the light of the quantitative mismatch of modifier cations and voids in the glass network and the existence of microheterogeneity due to the formation of microcrystalline sodium-rich areas with a low degree of polymerization. Highly polymerized regions, rich in silicon- and aluminum-containing structural units, are responsible for the compressibility of glass. The calculated degree of depolymerization in these regions, NBO/T = 0.28, corresponds to the experimentally obtained compressibility of Na6Al2Si6O18 glass.
Ключевые слова: silicate glasses; polymerization degree; high pressures; density properties;
Издано: 2021
Физ. характеристика: 120495
Цитирование: 1. Wallenberger, F.T., Brown, S.D., High-modulus glass fibers for new transportation and infrastructure composites and new infrared uses. Compos. Sci. Technol. 51 (1994), 243–263. 2. Allwardt, J.R., Stebbins, J.F., Schmidt, B.C., Frost, D.J., Withers, A.C., Hirschmann, M.M., Aluminum coordination and the densification of high-pressure aluminosilicate glasses. Am. Min. 90 (2005), 1218–1222. 3. Neuville, D.R., Cormier, L., Massiot, D., Al coordination and speciation in calcium aluminosilicate glasses: effect of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy. Chem. Geol. 229 (2006), 173–185. 4. Kelsey, K.E., Stebbins, J.F., Du, Lin-shu, Hankins, B., Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular and mullite. Am. Min. 92 (2007), 210–216. 5. Lee, S.K., Cody, G.D., Fei, Y., Mysen, B.O., Nature of polymerization and properties of silicate melts and glasses at high pressure. Geochim. Cosmochim. Acta 68 (2004), 4189–4200. 6. Mysen, B.O., Structure and Properties of Silicate Melts. 1988, Elsever, Amsterdam. 7. Stolper, E.M., Walker, D., Hager, B.H., Hays, J.F., Melt segregation from partially molten source regions: the importance of melt density and source regions size. J. Geophys. Res. 86 (1981), 6261–6271. 8. Williams, Q., Garnero, E.J., Seismic evidence for partial melt at the base of Earth′s Mantle. Science 273 (1996), 1528–1530. 9. Stebbins, J.F., Sykes, D., The structure of NaAlSi3O8 liquid at high pressure: new constraints from NMR spectroscopy. Am. Min. 75 (1990), 943–946. 10. Zachariasen, W.H., The atomic arrangement in glass. J. Am. Chem. Soc. 54 (1932), 3841–3851. 11. Hochella, M.F., Brown, G.E., Structure and viscosity of rhyolitic composition melts. Geochim. Cosmochim. Acta 48 (1984), 2631–2640. 12. Toplis, M.J., Dingwell, D.B., Lenci, T., Peraluminous viscosity maxima in Na2O–Al2O3–SiO2 liquids: the role of triclusters in tectosilicate melts. Geochim. Cosmochim. Acta 61 (1997), 2605–2612. 13. I. Kushiro, Change in viscosity with pressure of melts in the system CaO–Al2O3–SiO2, Carnegie Institution of Washington, Year Book 1980-1981 (1981) 339–341. 14. Webb, S., Courtial, P., Сompressibility of melts in the CaO–Al2O3–SiO2 system. Geochim. Cosmochim. Acta 60 (1996), 75–86. 15. Kress, V.C., Williams, Q., Carmichael, I.S.I., Ultrasonic investigation of melts in the system Na2O–Al2O3–SiO2. Geochim. Cosmochim. Acta 52 (1988), 283–292. 16. Kuryaeva, R.G., Kirkinskii, V.A., The influence of the degree of connectivity of the silicon–oxygen framework on the properties of silicate glasses at high pressures. Geokhimiya 39 (2001), 349–352 [Geochem. Int. (Engl. transl.) 39 (2001) 307–400]. 17. Kuryaeva, R.G., Effect of pressure on the refractive index and relative density of the CaO ⋅Al2O3⋅6SiO2 glass. J. Non-Cryst. Solids 355 (2009), 159–163. 18. Kuryaeva, R.G., Correlation of the compressibility of calcium aluminosilicate glasses with their degree of depolymerization. Phys. Chem. Glasses 58 (2017), 256–263. 19. Kuryaeva, R.G., Measurement of the Refractive Index of Isotropic Substances as a Method for Determining the Compressibility of Glasses (melts) and the Degree of Depolymerization of their Structure, 23, 2018, Vestnik Bashkirskogo Universiteta (in Russian), 689–695. 20. Kuryaeva, R.G., Dmitrieva, N.V., Effect of the replacement of sodium by calcium on compressibility in the CaO(Na2O)–Al2O3–SiO2 glass system. Phys. Chem. Glasses 55 (2014), 253–260. 21. Kuryaeva, R.G., Compressibility of magnesium silicate glasses in comparison with those of aluminosilicate glasses. Sol. State Sci. 24 (2013), 133–139. 22. Kuryaeva, R.G., Surkov, N.V., Effect of the replacement of aluminum by magnesium on the compressibility and degree of polymerization of silicate glasses. J. Mater. Sci. 48 (2013), 4416–4426. 23. Kuryaeva, R.G., Density properties of glasses of CaO(Na2O)–Al2O3(MgO)–SiO2 system, studied at pressures to 6.0 GPa, in comparison with the properties of similar melts. Sol. State Sci. 42 (2015), 52–61. 24. Kuryaeva, R.G., Dmitrieva, N.V., Surkov, N.V., Refractive index and compressibility of LiAlSi3O8 glass in the pressure range up to 6.0 GPa. Mater. Res. Bull. 74 (2016), 360–366. 25. Kuryaeva, R.G., Kirkinskii, V.A., Measurements of the refractive index at high pressures in an apparatus with diamond anvils. Prib. Tekh. Eksp. 37 (1994), 166–172. 26. Kuryaeva, R.G., Dmitrieva, N.V., The position of silica glass in a series of compressibilities of silicate glasses in the pressure range up to 5.0 GPa. Phys. Chem. Glasses 57 (2016), 272–278. 27. Piermarini, G.J., Block, S., Barnett, J.D., Forman, R.A., Calibration of pressure dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46 (1975), 2774–2780. 28. King, H.I., Prewitt, C.T., Improved pressure calibration system using the ruby R1 fluorescence. Rev. Sci. Instr. 51 (1980), 1037–1039. 29. Mueller, H., Theory of photoelastisity in amorphous solids. Physics 6 (1935), 179–184. 30. Kuryaeva, R.G., Effect of high pressure on the refractive index and density of natural aluminosilicate glasses of alkali basalt composition in the SiO2–Al2O3–TiO2– Fe2O3–P2O5–FeO–MnO–CaO–MgO–Na2O–K2O system. Fiz. Khim. Stekla 30 (2004), 712–723 [Glass Phys. Chem. (Engl. transl.) 30 (2004) 523– 531]. 31. Arndt, J., Hummel, W., The general refractivity formula applied to densified silicate glasses. Phys. Chem. Miner. 15 (1988), 363–369. 32. Kuryaeva, R.G., Surkov, N.V., Behaviour of the refractive index and compressibility of albite glass at pressures up to 6.0 GPa. Geokhimiya 48 (2010), 887–893 [Geochem. Int. (Engl. Transl.) 48 (2010) 835–841]. 33. Kuryaeva, R.G., Degree of polymerization of the CaAl2Si2O8 aluminosilicate glass. Fiz. Khim. Stekla 32 (2006), 690–697 [Glass Phys. Chem. (Engl. transl.) 32 (2006) 505–510]. 34. Williams, Q., Jeanloz, R., Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science 239 (1988), 902–905. 35. Allwardt, J.R., Poe, B.T., Stebbins, J.F., The effect of fictive temperature on Al coordination in high-pressure (10 GPa) Na aluminosilicate glasses. Am. Min. 90 (2005), 1453–1457. 36. Kelsey, K.F., Stebbins, J.F., Mosenfelder, J.L., Asimov, P.D., Simultaneous aluminum, silicon, and sodium coordination changes in 6 GPa sodium aluminosilicate glasses. Am. Min. 94 (2009), 1205–1215. 37. Yarger, J.L., Smith, K.H., Nieman, R.A., Diefenbacher, J., Wolf, G.H., Poe, B.T., McMillan, P.F., Al coordination changes in high-pressure aluminosilicate liquid. Science 270 (1995), 1964–1967. 38. Porai-Koshits, E.A., Aver'yanov, V.I., Porai-Koshits, E.A., (eds.), 1969, Consultants Bureau, New York Leningrad(Translated to English by E.B. Uvarov1973. 39. Vogel, W., Phase separation in glass. J. Non-Cryst. Solids 25 (1977), 170–214. 40. Bezborodov, M.A., Sintez i Ctroenie Silikatnih Stelol (Synthesis and Structure of Silicate Glasses). 1968, Press: Nauka I teknika (Science and technology), Minsk. 41. Phillips, J.C., Thorpe, M.F., Constraint theory, vector percolation and glass formation. Solid State Commun. 53 (1985), 699–702. 42. Thorpe, M.F., Bulk and surface floppy modes. J. Non-Cryst. Solids 182 (1995), 135–142. 43. Avramov, I., Keding, R., Rüssel, C., Kranold, R., Precipitate particle size distribution in rigid and floppy networks. J. Non-Cryst. Solids 278 (2000), 13–18. 44. Avramov, I., Rigid–floppy percolation threshold. J. Phys.: Condens. Matter, 21, 2009, 215402 3pp. 45. Le Losq, C., Neuville, D.R., Chen, W., Florian, P., Massiot, D., Zhou, Z., Greaves, G.N., Percolation channels: a universal idea to describe the atomic structure and dynamics of glasses and melts. Sci. Rep., 7, 2017, 16490, 10.1038/s41598-017-16741-3. 46. Gerber, Th., Himmel, B., The structure of silica glass. J. Non-Cryst. Solids 83 (1986), 324–334. 47. Taylor, M., Brown, G.E., Structure of mineral glasses–I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim. Cosmochim. Acta 43 (1979), 61–75. 48. Stevels, J.M., The physical properties of glass in relation to its structure. J. Soc. Glass Techn. 30 (1946), 31–53. 49. Appen, A.A., Khimiya Stekla (Chemistry of Glass). 1974, Press: Khimiya, Leningrad. 50. Bockris, O`M., Mackenzie, J.D., Kitchener, J.A., Viscous flow in silica and binary liquid silicates. Trans. Faraday Soc. 1 (1955), 1734–1748. 51. Nesbitt, H.W., Bancroft, G.M., Henderson, G.S., Ho, R., Dalby, K.N., Huang, Y., Yan, Z., Bridging, non-bridging and free (O2–) oxygen in Na2O-SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study. J. Non-Cryst. Solids 357 (2011), 170–180. 52. Kelsey, K.E., Stebbins, J.F., Singer, D.M., Brown Jr., G.E., Mosenfelder, J.L., Asimov, P.D., Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results. Geochim. Cosmochim. Acta 73 (2009), 3914–3933. 53. Allwardt, J.R., Stebbins, J.F., Terasaki, H., Du, L.-s., Frost, D.J., Withers, A.C., Hirschmann, M.M., Suzuki, A., Ohtani, E., Effect of structural transitions on properties of high pressure silicate melts: 27Al NMR, glass densities, and melt viscosities. Am. Min. 92 (2007), 1093–1104. 54. Godovikov, A.A., Khimicheskie Osnovi Sistematiki Mineralov (Chemical Principles of Mineral Classification). 1979, Press: Nedra, Moscow [in Russian]. 55. Riebling, E.F., Structure of molten sodium aluminosilicate liquids contaning at least 50 mol% SiO2 at 1500 °C. J. Chem. Phys. 44 (1966), 2857–2865. 56. Stebbins, J.F., Xu, Z., NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature 390 (1997), 60–62. 57. Stein, D.J., Spera, F.J., Molecular dynamics simulations of liquids and glasses in the system NaAlSiO4–SiO2: methodology and melt structures. Am. Min. 80 (1995), 417–431. 58. Oestrike, R., Yang, W.-H., Kirkpatrick, R.J., Hervig, R.L., Navrotsky, A., Montez, B., High-resolution Na, 27Al and 29Si NMR spectroscopy of framework aluminosilicate glasses. Geochim. Cosmochim. Acta 51 (1987), 2199–2209.