Инд. авторы: | Волкова Н.И., Михеев Е.И., Травин А.В., Владимиров А.Г., Мехоношин А.С., Хлестов В.В. |
Заглавие: | Условия формирования, u/pb и 40ar/39ar изотопное датирование uht гранулитов мыса калтыгей, западное прибайкалье |
Библ. ссылка: | Волкова Н.И., Михеев Е.И., Травин А.В., Владимиров А.Г., Мехоношин А.С., Хлестов В.В. Условия формирования, u/pb и 40ar/39ar изотопное датирование uht гранулитов мыса калтыгей, западное прибайкалье // Геодинамика и тектонофизика. - 2021. - Т.12. - № 2. - С.310-331. - EISSN 2078-502X. |
Внешние системы: | DOI: 10.5800/GT-2021-12-2-0526; РИНЦ: 46194146; |
Реферат: | eng: The study is focused on metapelitic granulites of Cape Kaltygei (Western Baikal region) that contain a diagnostic mineral assemblage of ultrahigh temperature (UHT) metamorphic rocks (orthopyroxene+sillimanite+quartz). The pseudosection-based thermobarometry yields peak metamorphic temperature and pressure values (T=950 °C, P=~9 kbar) and suggests near-isobaric cooling (IBC) conditions during the retrograde evolution of the granulites. The U/Pb zircon age estimates for metamorphism (~1.87 Ga) support the data published by other researchers. The SHRIMP-II U-Pb dating of zircon cores yields a minimum protolith age of 1.94-1.91 Ga. Biotites and amphiboles from granulites of Cape Kaltygei show the 40Ar/39Ar isotopic ages that are close to the Early Paleozoic accretion-collision system of the Western Baikal region. rus: Метапелитовые гранулиты мыса Калтыгей в Западном Прибайкалье содержат критическую минеральную ассоциацию ультравысокотемпературных (UHT) метаморфических пород (orthopyroxene+sillimanite+quartz). Оценки условий формирования пород методом псевдосечений позволили установить пиковые значения температур и давлений (T=950 °C, P=~9 кбар) и показать, что ретроградная эволюция гранулитов характеризовалась субизобарическим остыванием (IBC). U/Pb оценки возраста метаморфизма (~1.87 млрд лет) подтверждают ранее полученные данные других исследователей. Оценка минимального U-Pb возраста (SHRIMP-II) протолита, полученная по ядрам цирконов, составила 1.94-1.91 млрд лет. 40Ar/39Ar изотопные возрасты биотитов и амфиболов из гранулитов мыса Калтыгей близки к возрасту формирования раннепалеозойской аккреционно-коллизионной системы Западного Прибайкалья. |
Ключевые слова: | P-T псевдосечения; UHT гранулиты; Западное Прибайкалье; мыс Калтыгей; U-Pb and Ar-Ar geochronology; P-T pseudosections; UHT granulites; Western Baikal region; Cape Kaltygei; U-Pb и Ar-Ar изотопное датирование; |
Издано: | 2021 |
Физ. характеристика: | с.310-331 |
Цитирование: | 1. Aranovich L.Y., Berman R.G., 1997. A New Garnet-Orthopyroxene Thermometer Based on Reversed Al2O3 Solubility in FeO-Al2O3-SiO2 Orthopyroxene. American Mineralogist 82 (3-4), 345-353. https://doi.org/10.2138/am-1997-3-413. 2. Berman R.G., 2007. WinTWQ: A Software Package for Performing Internally-Consistent Thermobarometric Calculations. Version 2.3. Geological Survey of Canada, Open File 5462, 41 p. https://doi.org/10.4095/223228. 3. Berman R.G., Aranovich L.Y., Rancourt P., Mercier P.H., 2007. Reversed Phase Equilibrium Constraints on the Stability of Mg-Fe-Al Biotite. American Mineralogist 92, 139-150. https://doi.org/10.2138/am.2007.2051. 4. Бибикова Е.В., Карпенко С.Ф., Сумин Л.В., Богдановский О.Г., Кирнозова Т.И., Ляликов А.В., Макаров В.А., Аракелянц М.М., Кориковский С.П., Федоровский В.С. U-Pb, Sm-Nd и K-Ar возраст метаморфических и магматических пород Приольхонья (Западное Прибайкалье) // Геология и геохронология докембрия Сибирской платформы и ее обрамления. Л.: Наука, 1990. С. 170-183. 5. Бибикова Е.В., Кориковский С.П., Кирнозова Т.И., Сумин Л.В., Аракелянц М.М., Федоровский В.С., Петрова З.И. Определения возраста пород Байкало-Витимского зеленокаменного пояса изотопно-геохронологическими методами // Изотопное датирование процессов метаморфизма и метасоматоза. М.: Наука, 1987. C. 154-164. 6. Connolly J.A.D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters 236 (1-2), 524-541. https://doi.org/10.1016/j.epsl.2005.04.033. 7. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J., 2017. Pre-collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243-263. https://doi.org/10.1016/j.gr.2016.10.016. 8. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Kovach V.P., 2005. Petrogenesis of Early Proterozoic Postcollisional Granitoids in the Southern Siberian Craton. Petrology 13 (3), 229-252. 9. Гладкочуб Д.П., Донская Т.В., Эрнст Р., Мазукабзов А.М., Писаревский С.А. Протерозойские базитовые комплексы Сибирского кратона и их геодинамическая интерпретация // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания по Программе фундаментальных исследований ОНЗ РАН (11-14 октября 2016 г.). Иркутск: ИЗК СО РАН, 2016. Вып. 14. С. 46-48. 10. Gladkochub D.P., Donskaya T.V., Ernst R., Mazukabzov A.M., Sklyarov E.V., Pisarevsky S.A., Wingate M., Söderlund U., 2012. Proterozoic Basic Magmatism of the Siberian Craton: Main Stages and Their Geodynamic Interpretation. Geotectonics 46, 273-284. https://doi.org/10.1134/S0016852112040024. 11. Harley S.L., 1998. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. In: P.J. Treloar, P.J. O'Brien (Eds), What Drives Metamorphism and Metamorphic Relations? Geological Society of London Special Publications 138 (1), 81-107. https://doi.org/10.1144/GSL.SP.1996.138.01.06. 12. Harley S.L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology 26 (2), 125-154. https://doi.org/10.1111/j.1525-1314.2008.00765.x. 13. Holland T.J.B., Powell R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology 16 (3), 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x. 14. Kawasaki T., Motoyoshi Y., 2007. Solubility of TiO2 in Garnet and Orthopyroxene: Ti Thermometer for Ultrahigh-Temperature Granulites. In: Antarctica: A Keystone in a Changing World. Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences (August 26 - September 1, 2007). Santa Barbara, California, U.S.A. https://doi.org/10.3133/of2007-1047.srp038. 15. Kelsey D.E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research 13, 1-29. https://doi.org/10.1016/j.gr.2007.06.001. 16. Kelsey D.E., Hand M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers 6 (3), 311-356. https://doi.org/10.1016/j.gsf.2014.09.006. 17. Летников Ф.А., Халилов В.А., Савельева В.Б. Изотопное датирование эндогенных процессов в Приольхонье // Доклады АН СССР. 1995. Т. 344. № 1. С. 96-100. 18. Ludwig K.R., 1999. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 2.01. Berkley Geochronology Center Special Publication 1a, 47 p. 19. Ludwig K.R., 2000. SQUID 1.00: A User's Manual. Berkley Geochronology Center Special Publication 2, 17 p. 20. Mekhonoshin A.S., Ernst R., Söderlund U., Hamilton M.A., Kolotilina T.B., Izokh A.E., Polyakov G.V., Tolstykh N.D., 2016. Relationship between Platinum-Bearing Ultramafic-Mafic Intrusions and Large Igneous Provinces (Exemplified by the Siberian Craton). Russian Geology and Geophysics 57 (5), 822-833. https://doi.org/10.1016/j.rgg.2015.09.020. 21. Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W., 2005. Multistage Magmatic and Metamorphic Evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic Zircon Ages Revealed by SHRIMP and TIMS. Precambrian Research 136 (3-4), 353-368. https://doi.org/10.1016/j.precamres.2004.12.003. 22. Schuth S., Gornyy V.I., Berndt J., Shevchenko S.S., Sergeev S.A., Karpuzov A.F., Mansfeldt T., 2012. Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia. International Journal Geosciences 3, 289-296. http://dx.doi.org/10.4236/ijg.2012.32030. 23. Travin A.V., 2016. Thermochronology of Early Paleozoic Collisional and Subduction-Collisional Structures of Central Asia. Russian Geology and Geophysics 57 (3), 434-450. https://doi.org/10.1016/j.rgg.2016.03.006. 24. Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B., 2009. Thermochronology of the Chernorud Granulite Zone, Ol'khon Region, Western Baikal Area. Geochemistry International 47, 1107-1124. https://doi.org/10.1134/S0016702909110068. 25. Turkina O.M., Sukhorukov V.P., 2015. Stages and Conditions of Metamorphism of Mafic Granulites in the Early Precambrian Complex of the Angara-Kan Terrane (Southwestern Siberian Craton). Russian Geology and Geophysics 56 (11), 1544-1567. https://doi.org/10.1016/j.rgg.2015.10.004. 26. Vladimirov A.G., Volkova N.I., Mekhonoshin A.S., Travin A.V., Vladimirov V.G., Khromykh S.V., Yudin D.S., Kolotilina T.B., 2011. The Geodynamic Model of Formation of Early Caledonides in the Olkhon Region (West Pribaikalie). Doklady Earth Sciences 436, 203-209. https://doi.org/10.1134/S1028334X10901234. 27. Волкова Н.И., Мехоношин А.С., Михеев Е.И., Хлестов В.В., Владимиров А.Г., Травин А.В. UHT метаморфизм гранулитов мыса Калтыгей, Западное Прибайкалье // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания по Программе фундаментальных исследований ОНЗ РАН (14-18 октября 2015 г.). Иркутск: ИЗК СО РАН, 2015. Вып. 13. С. 37-39. 28. Волкова Н.И., Мехоношин А.С., Владимиров А.Г., Хлестов В.В., Михеев Е.И., Травин А.В. Ортопироксен-силлиманит-кварцевые ассоциации гранулитов мыса Калтыгей, Западное Прибайкалье // Корреляция алтаид и уралид: магматизм, метаморфизм, стратиграфия, геохронология, геодинамика и металлогения: Материалы Третьей международной научной конференции (29 марта - 1 апреля 2016г.). Новосибирск: Изд-во СО РАН, 2016. С. 56-57. 29. Волкова Н.И., Мехоношин А.С., Владимиров А.Г., Хлестов В.В., Травин А.В., Михеев Е.И., Руднев С.Н. UHT метаморфизм гранулитов мыса Калтыгей, Западное Прибайкалье: псевдосекции и U-Pb (SHRIMP) возраст // Петрология магматических и метаморфических комплексов: Материалы IX Всероссийской петрографической конференции (28 ноября - 2 декабря 2017 г.). Томск: ЦНТИ, 2017. Вып. 9. С. 85-91. 30. Volkova N.I., Travin A.V., Yudin D.S., Khromykh S.V., Mekhonoshin A.S., Vladimirov A.G., 2008. The 40Ar/39 Ar Dating of Metamorphic Rocks of the Ol'khon Region (Western Baikal Region). Doklady Earth Sciences 420, 686-689. https://doi.org/10.1134/S1028334X08040363. 31. Volkova N.I., Vladimirov A.G., Travin A.V., Mekhonoshin A.S., Khromykh S.V., Yudin D.S., Rudnev S.N., 2010. U-Pb Isotopic Dating of Zircons (SHRIMP-II) from Granulites of the Ol'khon Region of Western Baikal Area. Doklady Earth Sciences 432, 821-824. https://doi.org/10.1134/S1028334X10060243. 32. Wells P.R.A., 1979. Chemical and Thermal Evolution of Archaean Sialic Crust, Southern West Greenland. Journal of Petrology 20 (20), 187-226. https://doi.org/10.1093/petrology/20.2.187. 33. Whitney D.L., Evans B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist 95 (1), 185-187. https://doi.org/10.2138/am.2010.3371. 34. Williams I.S., 1997. U-Th-Pb Geochronology by Ion Microprobe. In: M.A. McKibben, W.C. Shanks III, W.I. Ridley (Eds), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology 7, 1-35. https://doi.org/10.5382/Rev.07.01. |