Инд. авторы: Koulakov I., Jakovlev A., Bushenkova N., Novgorodova A., Stupina T., Abkadyrov I., Plechov P., Davydova V., Mania R., Walter T.R., Smirnov S.Z., Senyukov S., Droznina S.Y.
Заглавие: Anatomy of the bezymianny volcano merely before an explosive eruption on 20.12.2017
Библ. ссылка: Koulakov I., Jakovlev A., Bushenkova N., Novgorodova A., Stupina T., Abkadyrov I., Plechov P., Davydova V., Mania R., Walter T.R., Smirnov S.Z., Senyukov S., Droznina S.Y. Anatomy of the bezymianny volcano merely before an explosive eruption on 20.12.2017 // Scientific Reports. - 2021. - Vol.11. - Iss. 1. - Art.1758. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/s41598-021-81498-9; РИНЦ: 44999499; PubMed: 33469148; WoS: 000676336800004;
Реферат: eng: Strong explosive eruptions of volcanoes throw out mixtures of gases and ash from high-pressure underground reservoirs. Investigating these subsurface reservoirs may help to forecast and characterize an eruption. In this study, we compare seismic tomography results with remote sensing and petrology data to identify deep and subaerial manifestations of pre-eruptive processes at Bezymianny volcano in Kamchatka shortly before its violent explosion on December 20, 2017. Based on camera networks we identify precursory rockfalls, and based on satellite radar data we find pre-eruptive summit inflation. Our seismic network recorded the P and S wave data from over 500 local earthquakes used to invert for a 3D seismic velocity distribution beneath Bezymianny illuminating its eruptive state days before the eruption. The derived tomography model, in conjunction with the presence of the high-temperature-stable SiO2 polymorph Tridymite in juvenile rock samples, allowed us to infer the coexistence of magma and gas reservoirs revealed as anomalies of low (1.5) and high (2.0) Vp/Vs ratios, respectively, located at depths of 2–3 km and only 2 km apart. The reservoirs both control the current eruptive activity: while the magma reservoir is responsible for episodic dome growth and lava flow emplacements, the spatially separated gas reservoir may control short but powerful explosive eruptions of Bezymianny.
Ключевые слова: GAS; DEFORMATION; KLYUCHEVSKOY; BENEATH; TIME; LASCAR VOLCANO; PLUMBING SYSTEM; RADAR INTERFEROMETRY; ALGORITHM; SUBSIDENCE;
Издано: 2021
Физ. характеристика: 1758
Цитирование: 1. Pyle, D.M. Sizes of volcanic eruptions in The Encyclopedia of Volcanoes (eds. Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H. & Stix, J.) 257–264 (Academic Press, 2015). 2. Marzocchi, W. & Bebbington, M. S. Probabilistic eruption forecasting at short and long time scales. Bull. Volcanol. 74(8), 1777–1805 (2012). DOI: 10.1007/s00445-012-0633-x 3. Jousset, P. et al. The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’event. J. Volcanol. Geotherm. Res. 241, 121–135 (2012). 4. Voight, B. et al. Remarkable cyclic ground deformation monitored in real-time on Montserrat, and its use in eruption forecasting. Geophys. Res. Lett. 25(18), 3405–3408 (1998). DOI: 10.1029/98GL01160 5. Sparks, R. S. J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210(1–2), 1–15 (2003). DOI: 10.1016/S0012-821X(03)00124-9 6. Patanè, D., Barberi, G., Cocina, O., De Gori, P. & Chiarabba, C. Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313, 821–823 (2006). DOI: 10.1126/science.1127724 7. Vargas, C. A. et al. Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Sci. Rep. 7, 46094. 10.1038/srep46094 (2017). DOI: 10.1038/srep46094 8. Koulakov, I. & Vargas, C. A. Evolution of the magma conduit beneath the Galeras volcano inferred from repeated seismic tomography. Geophys. Res. Lett. 45(15), 7514–7522 (2018). DOI: 10.1029/2018GL078850 9. Massonnet, D. & Sigmundsson, F. Remote sensing of volcano deformation by radar interferometry from various satellites. GMS 116, 207–221 (2000). 10. Lu, Z. & Dzurisin, D. InSAR Imaging of Aleutian Volcanoes in InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space (eds. Lu, Z. & Dzurisin, D.) 87–345 (Springer, Berlin, 2014). https://doi.org/10.1007/978-3-642-00348-6_6. 11. Blundy, J. & Cashman, K. Petrologic reconstruction of magmatic system variables and processes. Rev. Min. Geochem. 69(1), 179–239 (2008). DOI: 10.2138/rmg.2008.69.6 12. Pallister, J.S. et al. Petrology of the 2004–2006 Mount St. Helens lava dome--implications for magmatic plumbing and eruption triggering in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006 (eds. Sherrod, D. R., Scott, W. E. & Stauffer, P. H.), 647–702. (U.S. Geological Survey, Reston, 2008). https://doi.org/10.3133/pp175030. 13. Johnson, J. B., Lyons, J. J., Andrews, B. J. & Lees, J. M. Explosive dome eruptions modulated by periodic gas-driven inflation. Geophys. Res. Lett. 41, 6689–6697. 10.1002/2014GL061310 (2014). DOI: 10.1002/2014GL061310 14. Ichihara, M., Lyons, J. J. & Yokoo, A. Switching from seismic to seismo-acoustic harmonic tremor at a transition of eruptive activity during the Shinmoe-dake 2011 eruption. Earth Planets Space 65(6), 633–643. 10.5047/eps.2013.05.003 (2013). DOI: 10.5047/eps.2013.05.003 15. Matthews, S. J., Gardeweg, M. C. & Sparks, R. S. J. The 1984 to 1996 cyclic activity of Lascar Volcano, Northern Chile: Cycles of dome growth, dome subsidence, degassing and explosive eruptions. Bull. Volcanol. 59(1), 72–82 (1997). DOI: 10.1007/s004450050176 16. Salzer, J. T. et al. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets. JGR Solid Earth 121, 7882–7902. 10.1002/2016JB013045 (2016). DOI: 10.1002/2016JB013045 17. Gaunt, H. E., Sammonds, P. R., Meredith, P. G., Smith, R. & Pallister, J. S. Pathways for degassing during the lava dome eruption of Mount St. Helens 2004–2008. Geology 42(11), 947–950 (2014). DOI: 10.1130/G35940.1 18. Sparks, R. S. J. Causes and consequences of pressurisation in lava dome eruptions. Earth Planet. Sci. Lett. 150(3), 177–189 (1997). DOI: 10.1016/S0012-821X(97)00109-X 19. Ozerov, A. Y., Ariskin, A. A., Kyle, P., Bogoyavlenskaya, G. E. & Karpenko, S. F. A petrological–geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchevskoi and Bezymiannyi volcanoes, Kamchatka. Petrol. 5, 550–569 (1997). 20. Turner, S., Izbekov, P. & Langmuir, C. The magma plumbing system of Bezymianny volcano: Insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions. J. Volcanol. Geotherm. Res. 263, 108–121 (2013). DOI: 10.1016/j.jvolgeores.2012.12.014 21. Gorshkov, G. S. Gigantic directed blast at Shiveluch volcano (Kamchatka). Bull. Volcanol. 20(1), 77–109 (1959). DOI: 10.1007/BF02596572 22. Belousov, A. B. Deposits of the 30 March 1956 directed blast at Bezymianny volcano, Kamchatka, Russia. Bull. Volcanol. 57, 649–662 (1996). DOI: 10.1007/s004450050118 23. Plechov, P. Y., Tsai, A. E., Shcherbakov, V. D. & Dirksen, O. V. Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology 16(1), 19–35 (2008). DOI: 10.1134/S0869591108010025 24. Girina, O. A. Chronology of Bezymianny Volcano activity, 1956–2010. J. Volcanol. Geotherm. Res. 263, 22–41 (2013). DOI: 10.1016/j.jvolgeores.2013.05.002 25. Shevchenko, A. V. et al. The rebirth and evolution of Bezymianny volcano, Kamchatka after the 1956 sector collapse. Commun. Earth. Environ. 1, 15. 10.1038/s43247-020-00014-5 (2020). DOI: 10.1038/s43247-020-00014-5 26. Girina, O. A. et al. Bezymianny volcano eruption on December 20, 2017. Modern Probl. Remote Sens. Earth Space 15(3), 88–99 (2018). 27. Senyukov, S.L., Nuzhdina, I.N. & Chebrov, D.V. Kamchatka volcanoes in Earthquakes in Russia, 2017 (eds. Malovichko, A.A. et al.) 93–103 (GS RAS, Obninsk, 2019). 28. Chebrov, V. N. et al. The development of the system of integrated instrumental monitoring of volcanoes in the Far East Region. Seismic Instrum. 49(3), 254–264 (2013). DOI: 10.3103/S0747923913030055 29. Lees, J.M., Symons, N., Chubarova, O., Gorelchik, V. & Ozerov, A. Tomographic Images of Klyuchevskoy Volcano P-Wave Velocity in Volcanism and Subduction: The Kamchatka Region (eds. Eichelberger, J., Gordeev, E., Izbekov, P., Kasahara, M. & Lees J.) Geophysical Monograph Series, vol. 172, 293–302 (American Geophysical Union, Washington, 2007). 30. Koulakov, I. et al. Feeding volcanoes of the Kluchevskoy group from the results of local earthquake tomography. Geophys. Res. Lett. 38, 9. 10.1029/2011GL046957 (2011). DOI: 10.1029/2011GL046957 31. Koulakov, I. et al. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. J. Volcanol. Geotherm. Res. 263, 75–91 (2013). DOI: 10.1016/j.jvolgeores.2012.10.014 32. Ivanov, I. et al. Magma sources beneath the Klyuchevskoy and Bezymianny volcanoes inferred from local earthquake seismic tomography. J. Volcanol. Geotherm. Res. 323(1), 62–71 (2016). DOI: 10.1016/j.jvolgeores.2016.04.010 33. Koulakov, I. et al. Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka. JGR Solid Earth 122(5), 3852–3874. 10.1002/2017JB014082 (2017). DOI: 10.1002/2017JB014082 34. Green, R. G. et al. Magmatic and sedimentary structure beneath the Klyuchevskoy volcanic group, Kamchatka, from ambient noise tomography. JGR Solid Earth 125, 3. 10.1029/2019JB018900 (2020). DOI: 10.1029/2019JB018900 35. Koulakov, I. et al. Mantle and crustal sources of magmatic activity of Klyuchevskoy and surrounding volcanoes in Kamchatka inferred from earthquake tomography. JGR Solid Earth 125, 10. 10.1029/2020JB020097 (2020). DOI: 10.1029/2020JB020097 36. Shcherbakov, V. D., Plechov, P. Y., Izbekov, P. E. & Shipman, J. S. Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contrib. Mineral. Petr. 162(1), 83–99 (2011). DOI: 10.1007/s00410-010-0584-1 37. Davydova, V. O., Shcherbakov, V. D., Plechov, P. Y. & Perepelov, A. B. Petrology of mafic enclaves in the 2006–2012 eruptive products of Bezymianny Volcano, Kamchatka. Petrology 25(6), 592–614 (2017). DOI: 10.1134/S0869591117060029 38. Koulakov, I. LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms. Bull. Seismol. Soc. Am. 99, 194–214 (2009). DOI: 10.1785/0120080013 39. Mania, R., Walter, T. R., Belousova, M., Belousov, A. & Senyukov, S. L. Deformations and Morphology Changes Associated with the 2016–2017 Eruption Sequence at Bezymianny Volcano, Kamchatka. Remote Sens. 11, 1278. 10.3390/rs11111278 (2019). DOI: 10.3390/rs11111278 40. Massonnet, D. & Feigl, K. L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36(4), 441–500. 10.1029/97RG03139 (1998). DOI: 10.1029/97RG03139 41. Wang, T., Poland, M. P. & Lu, Z. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time series TerraSAR-X imagery. Geophys. Res. Lett. 42(10), 614–621. 10.1002/2015GL066784 (2015). DOI: 10.1002/2015GL066784 42. Thielicke, W. PIVlab - particle image velocimetry (PIV) tool with GUI. PIVlab repository on GitHub https://github.com/Shrediquette/PIVlab/releases/tag/v2.36.5 (2020). 43. Hurwitz, S., Kipp, K. L., Ingebritsen, S. E. & Reid, M. E. Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. JGR Solid Earth 108, B12. 10.1029/2003JB002565 (2003). DOI: 10.1029/2003JB002565 44. Bushenkova, N. et al. Tomographic images of magma chambers beneath the Avacha and Koryaksky volcanoes in Kamchatka. JGR Solid Earth 124, 9694–9713 (2019). DOI: 10.1029/2019JB017952 45. Takei, Y. Effect of pore geometry on VP/VS: from equilibrium geometry to crack. JGR Solid Earth 107, B2. 10.1029/2001JB000522 (2002). DOI: 10.1029/2001JB000522 46. Husen, S., Smith, R. B. & Waite, G. P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 131, 397–410 (2004). DOI: 10.1016/S0377-0273(03)00416-5 47. De Siena, L., Del Pezzo, E. & Bianco, F. Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins, and feeding systems. JGR Solid Earth 115, B9. 10.1029/2009JB006938 (2010). DOI: 10.1029/2009JB006938 48. Kuznetsov, P. Y. et al. Structure of volatile conduits beneath Gorely Volcano (Kamchatka) revealed by local earthquake tomography. Geosciences 7(4), 111. 10.3390/geosciences7040111 (2017). DOI: 10.3390/geosciences7040111 49. Koulakov, I. et al. Causes of volcanic unrest at Mt. Spurr in 2004–2005 inferred from repeated tomography. Sci. Rep. 8, 17482. 10.1038/s41598-018-35453-w (2018). DOI: 10.1038/s41598-018-35453-w 50. Ivanova, D. A. et al. Cristobalite in extrusive rocks of Bezymianny volcano. New Data Min. 52, 51–58 (2018). 51. Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999). DOI: 10.2113/gsecongeo.94.8.1193 52. López, T. et al. Constraints on magma processes, subsurface conditions, and total volatile flux at Bezymianny Volcano in 2007–2010 from direct and remote volcanic gas measurements. J. Volcanol. Geotherm. Res. 263, 92–107 (2013). DOI: 10.1016/j.jvolgeores.2012.10.015 53. Jaupart, C. & Allègre, C. J. Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet. Sci. Lett. 102(3–4), 413–429 (1991). DOI: 10.1016/0012-821X(91)90032-D 54. Gaete Rojas, A. B. et al. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, evidenced by multiparametric data. Nat. Hazards Earth Syst. Sci. (NHESS) 20(2), 377–397 (2020). DOI: 10.5194/nhess-20-377-2020 55. Um, J. & Thurber, C. H. A fast algorithm for two-point seismic ray tracing. Bull. Seism. Soc. Am. 77, 972–986 (1987). 56. Paige, C. C. & Saunders, M. A. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982). DOI: 10.1145/355984.355989 57. Nolet, G. Seismic wave propagation and seismic tomography in Seismic Tomography, Seismology and Exploration Geophysics (ed. Nolet, G.) 1–23 (Springer, 1987).