Инд. авторы: Korzhneva K.E, Goloshumova A.A., Tarasova A.Yu., Isaenko L.I., Kurus A.F., Bekenev V.L., Khyzhun O.Y., Molokeev M.S.
Заглавие: Single crystal growth and the electronic structure of rb2na(no3)3: experiment and theory
Библ. ссылка: Korzhneva K.E, Goloshumova A.A., Tarasova A.Yu., Isaenko L.I., Kurus A.F., Bekenev V.L., Khyzhun O.Y., Molokeev M.S. Single crystal growth and the electronic structure of rb2na(no3)3: experiment and theory // Journal of Solid State Chemistry. - 2021. - Vol.294. - Art.121910. - ISSN 0022-4596. - EISSN 1095-726X.
Внешние системы: DOI: 10.1016/j.jssc.2020.121910; РИНЦ: 45075485;
Реферат: eng: Rb2Na(NO3)3 crystals demonstrate nonlinear optical properties and can be used as a converter of laser radiation in the shortwave region. The crystals were grown in the present work by the Bridgman–Stockbarger method in a ratio of 75 ​wt%(RbNO3) and 25 ​wt%(NaNO3). After the growth, a transparent centimeter size single crystal (6 ​cm long) was obtained for the first time that is very important for its practical application. The unit cell volume of double Rb2Na(NO3)3 nitrate is intermediate between the cell volumes of simple rubidium and sodium nitrates, RbNO3 and NaNO3. Electronic structure of Rb2Na(NO3)3 was studied in the present work from both experimental and theoretical viewpoints. In particular, employing X-ray photoelectron spectroscopy, we have measured binding energies of core electrons and energy distribution of the electronic states within the valence band region of the Rb2Na(NO3)3 crystal and established rather big binding energies for N 1s and O 1s core-level electrons. The bombardment of middle-energy Ar+ ions induces transformation of some nitrogen atoms of the analyzing topmost layers of the Rb2Na(NO3)3 crystal surface from the NO3 group to the NO2 group. To explore in detail the filling of the valence band of Rb2Na(NO3)3 by electronic states associated with constituting atoms, we use first-principles calculations within a density functional theory (DFT) framework. The DFT calculations reveal that O 2p states are the principal contributors to the valence band bringing the main input in its upper portion. The theoretical finding is supported experimentally by fitting the X-ray photoelectron valence band spectrum and the X-ray emission O Kα band on the total energy scale. The conduction band bottom of Rb2Na(NO3)3 is composed by unoccupied O 2p and N 2p states in almost equal proportion.
Ключевые слова: x-ray photoelectron spectroscopy; Nonlinear optical materials; crystal growth; electronic structure; Double nitrates;
Издано: 2021
Физ. характеристика: 121910
Цитирование: 1. Ok, K.M., Chi, E.O., Halasyamani, P.S., Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 35 (2006), 710–717. 2. Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Ananchenko, L.N., Isaenko, L.I., Yelisseyev, A.P., Khyzhun, O.Y., Electronic structure and optical properties of noncentrosymmetric LiGaSe2: experimental measurements and DFT band structure calculations. Opt. Mater. 66 (2017), 149–159. 3. Lavrentyev, A.A., Gabrelian, B.V., Vu, T.V., Isaenko, L.I., Yelisseyev, A.P., Khyzhun, O.Y., Electronic structure and optical properties of LiGa0.5In0.5Se2 single crystal, a nonlinear optical mid-IR material. Opt. Mater. 80 (2018), 12–21. 4. Isaenko, L.I., Korzhneva, K.E., Goryainov, S.V., Goloshumova, A.A., Sheludyakova, L.A., Bekenev, V.L., Khyzhun, O.Y., Structural, optical and electronic properties of K2Ba(NO3)4 crystal. Phys. B 531 (2018), 149–158. 5. Ksiksi, N., Driss, M., Hellali, D., Guesmi, A., Zamali, H., Le nitrate double NaRb2(NO3)3, compose intermediaire du systeme binaire isobare NaNO3+RbNO3: etudes thermiques et cristallographiques. Acta Crystallogr. 71 (2015), 455–458. 6. Boyd, R.W., Fischer, G.L., Buschow, K.H.J., Flemings, M.C., Kramer, E.J., Cahn, R.W., Ilschner, B., Mahajan, S., (eds.) Encyclopedia of Materials: Science and Technology, 2001, Elsevier. 7. Rajan, R.V., George, M., Alex, J., Vinitha, G., Growth, effect of protonation and hydrogen bonding interactions of L-Histidine nitrate monohydrate, a potential semiorganic third order nonlinear optical material. Opt. Mater. 86 (2018), 198–212. 8. Liu, X., Gong, P., Yang, Y., Song, G., Lin, Z., Nitrate nonlinear optical crystals: a survey on structure-performance relationships. Coord. Chem. Rev., 400, 2019, 213045. 9. Chen, C.T., Wu, B.C., D Jiang, A., A new-type ultraviolet SHG crystal-Beta-BaB2O4. Sci. Sin. B 28 (1985), 235–243. 10. Chen, C., Wu, Y., Jiang, A., Wu, B., You, G., Li, R., Lin, S., New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6 (1989), 616–621. 11. Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W., Yu, L., Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 373 (1995), 322–324. 12. Ogorodnikov, I.N., Pustovarov, V.A., Kruzhalov, A.V., Isaenko, L.I., Kirm, M., Zimmerer, G., Self-trapped excitons in LiB3O5 and Li2B4O7 lithium borates: time-resolved low-temperature luminescence VUV spectroscopy. Phys. Solid State 42 (2000), 464–472. 13. Luo, M., Ye, N., Zou, G., Lin, C., Cheng, W., Na8Lu2(CO3)(6)F2 and Na3Lu(CO3)(2)F2: rare earth fluoride carbonates as deep-UV nonlinear optical materials. Chem. Mater. 25 (2013), 3147–3153. 14. Luo, M., Lin, C., Zou, G., Ye, N., Cheng, W., Sodium-rare earth carbonates with shorite structure and large second harmonic generation response. CrystEngComm 16 (2014), 4414–4421. 15. Isaenko, L.I., Yelisseyev, A.P., Tkachuk, A.M., Ivanova, S.E., Ebrahimzadeh, M., Sorokina, I., (eds.) Mid-Infrared Coherent Sources and Application, 2007, Springer, New York, 3–65. 16. Merkulov, A.A., Isaenko, L.I., Belov, A.I., Crystal structure of KTP and KTA. I. Structure of the potassium–oxygen nets and differences between K+ sites 1 and 2. J. Struct. Chem. 42 (2001), 610–616. 17. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Sinelnichenko, A.K., Isaenko, L.I., Electronic structure of KTiOAsO4: a comparative study by the full potential linearized augmented plane wave method, X-ray emission spectroscopy and X-ray photoelectron spectroscopy. J. Alloys Compd. 477 (2009), 768–775. 18. Tarasova, A.Y., Isaenko, L.I., Kesler, V.G., Pashkov, V.M., Yelisseyev, A.P., Denysyuk, N.M., Khyzhun, O.Y., Electronic structure and fundamental absorption edges of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals. J. Phys. Chem. Solid. 73 (2012), 674–682. 19. Li, R.K., Exploration Research on Inorganic UV Nonlinear Optical Crystal. 1988, Fujian Institute of Research on the Structure of Matter: Fuzhou, China. 20. Frontiers of Optical Spectroscopy. Investigating Extreme Physical Conditions with Advanced Optical Techniques (Ed. Baldassare Di Bartolo), 2003, Kluwer Academic Publishers. 21. Diogenov, G.G., Sarapulova, I.F., Systems Li, Na, Cs || NO3 and Li, Na, Rb || NO3. Zh. Neorganicheskoy Khimiy 10 (1965), 1032–1934 (in Russian). 22. Cingolani, A., Berchiesi, M.A., Piantoni, G., Leonesi, D., The (Tl,Na,Li)NO3, (Tl,Na,Rb)NO3, (Tl,Na,Cs)NO3 ternary systems. Z. Naturforsch. A 27 (1972), 159–161. 23. Karoui, N.K., Hellali, D., Saidi, A., Zamali, H., The phase diagram of the isobaric binary system (NaNO3 + RbNO3). J. Therm. Anal. Calorim. 124 (2016), 1145–1151. 24. http://www.crct.polymtl.ca/fact/documentation/FTsalt/NaNO3-RbNO3.jpg. 25. Zou, G., Lin, C., Kim, H.G., Jo, H., Ok, K.M., Rb2Na(NO3)3: a congruently melting UV-NLO cryastal with a very strong second-harmonic generation response. Crystals, 6, 2016, 42. 26. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Galashov, E.N., Shlegel, V.N., Electronic properties of ZnWO4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data. Mater. Chem. Phys. 140 (2013), 588–595. 27. Bruker AXS TOPAS V4, General Profile and Structure Analysis Software for Powder Diffraction Data: User's Manual. 2008, Bruker AXS, Karlsruhe, Germany. 28. Khyzhun, O.Y., Bekenev, V.L., Solonin, Y.M., Electronic structure of face-centred cubic MoO2: a comparative study by the full potential linearized augmented plane wave method, X-ray emission spectroscopy and X-ray photoelectron spectroscopy. J. Alloys Compd. 459 (2008), 22–28. 29. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., DalCorso, A., Fabris, S., Fratesi, G., deGironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21, 2009, 395502. 30. http://www.quantum-espresso.org/pseudopotentials. 31. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), 3865–3868. 32. Liu, J., Mei, W.N., Ossowski, M.M., Duan, C.-G., Smith, R.W., Hardy, J.R., Molecular dynamics simulation of structural phase transitions in RbNO3 and CsNO3. J. Solid State Chem. 160 (2001), 222–229. 33. Gonschorek, G., Miehe, G., Weitzel, H., Fuess, H., Schmahl, W.W., The crystal structures of NaNO3 at 100 K, 120 K, and 563 K. Z. Kristallogr. 149 (1979), 752–756. 34. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E., (eds.) Handbook of X-Ray Photoelectron Spectroscopy, 1979, Perkin-Elmer Corp., Phys. Elect. Div., Minesota. 35. Brundle, C.R., Baker, A.D., (eds.) Electron Spectroscopy: Theory, Techniques and Applications, vol. 1, 1997, Academic Press, London/New-York, San Francisco. 36. Khyzhun, O.Y., Zaulychny, Y.V., Electronic structure of substoichiometric tantalum nitrides studied by the XES method. Phys. Status Solidi B 207 (1998), 191–197. 37. Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C.S., Affinito, J., On the surface chemical aspects of very high energy density, ReRechargable Li-sulfur batteries. J. Electrochem. Soc. 156 (2009), A694–A702. 38. Baltrusaitis, J., Jayaweera, P.M., Grassian, V.H., XPS study of different dioxide adsorption on metal oxide particle surface under different environmental conditions. Phys. Chem. Chem. Phys. 11 (2009), 8295–8305. 39. Burger, K., Tschismarov, F., Ebel, H., XPS/ESCA applied to quick-frozen solutions. J. Electron. Spectrosc. Relat. Phenom. 10 (1977), 461–465. 40. Isaenko, L.I., Korzhneva, K.E., Khyzhun, O.Y., Molokeev, M.S., Goloshumova, A.A., Tarasova, A.Y., Structural and X-ray spectroscopy studies of Pb1-xBax(NO3)2 solid solutions. J. Solid State Chem. 277 (2019), 786–792. 41. Ramana, C.V., Atuchin, V.V., Becker, U., Ewing, R.C., Isaenko, L.I., Khyzhun, O.Y., Merkulov, A.A., Pokrovsky, L.D., Sinelnichenko, A.K., Zhurkov, S.A., Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces. J. Phys. Chem. C 111 (2007), 2702–2708. 42. Atuchin, V.V., Isaenko, L.I., Khyzhun, O.Y., Pokrovsky, L.D., Sinelnichenko, A.K., Zhurkov, S.A., Structural and electronic properties of the KTiOAsO4(001) surface. Opt. Mater. 30 (2008), 1149–1152. 43. Atuchin, V.V., Pokrovsky, L.D., Khyzhun, O.Y., Sinelnichenko, A.K., Ramana, C.V., Surface crystallography and electronic structure of potassium yttrium tungstate. J. Appl. Phys., 104, 2008, 033518. 44. Bandis, C., Scudiero, L., Langford, S.C., Dickinson, J.T., Photoelectron emission studies of cleaved and excimer laser irradiated single-crystal surfaces of NaNO3 and NaNO2. Surf. Sci. 442 (1999), 413–419. 45. Anduru, S., Kontarini, S., Rabalais, J.W., Electron-, x-ray-, and ion-stimulated decomposition of nitrate salts. J. Phys. Chem. 90 (1986), 1683–1688. 46. Khyzhun, O.Y., Bekenev, V.L., Atuchin, V.V., Pokrovsky, L.D., Shlegel, V.N., Ivannikova, N.V., The electronic structure of Pb2MoO5: first-principles DFT calculations and X-ray spectroscopy measurements. Mater. Des. 105 (2016), 315–322. 47. Reshak, A.H., Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Sci. Rep., 7, 2017, 46415. 48. Reshak, A.H., Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16 (2014), 10558–10565. 49. Davydyuk, G.E., Khyzhun, O.Y., Reshak, A.H., Kamarudin, H., Myronchuk, G.L., Danylchuk, S.P., Fedorchuk, A.O., Piskach, L.V., Mozolyuk, M.Y., Parasyuk, O.V., Photoelectrical properties and the electronic structure of Tl1–xIn1–xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys. Chem. Chem. Phys. 15 (2013), 6965–6972. 50. Reshak, A.H., Kogut, Y.M., Fedorchuk, A.O., Zamuruyeva, O.V., Myronchuk, G.L., Parasyuk, O.V., Kamarudin, H., Auluck, S., Plucinski, K.J., Bila, J., Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys. Chem. Chem. Phys. 15 (2013), 18979–18986. 51. Reshak, A.H., Stys, D., Auluck, S., Kityk, I.V., Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys. 13 (2011), 2945–2952. 52. Reshak, A.H., Fe2MnSixGe1−x: influence thermoelectric properties of varying the germanium content. RSC Adv. 4 (2014), 39565–39571. 53. Reshak, A.H., Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 4 (2014), 63137–63142. 54. Setyawan, Wahyu, Curtarolo, Stefano, High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49 (2010), 299–312.