Инд. авторы: Khokhryakov A.F., Kruk A.N., Sokol A.G.
Заглавие: The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt
Библ. ссылка: Khokhryakov A.F., Kruk A.N., Sokol A.G. The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt // Lithos. - 2021. - Vol.394-395. - Art.106166. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2021.106166; РИНЦ: 46016757; WoS: 000674568300001;
Реферат: eng: When transported by magmas to the Earth's surface, diamond crystals underwent resorption, the intensity of which significantly differed in various kimberlite pipes. We experimentally simulated diamond resorption at different oxygen fugacities (fO2) in ascending kimberlite magma enriched in CO2 and H2O. The experiments were carried out using specially prepared unaltered Group I kimberlite from the Udachnaya East pipe (Yakutia) and model carbonatite at 3.0 GPa, 1200–1400 °C, and fO2 in a range of NNO–2 to NNO + 3.2 log units (where NNO is Ni-NiO buffer). Over the investigated range of conditions, resorption of octahedral diamond crystals is found to occur according to a single scenario. Negative trigons and shield-shaped laminae develop on the {111} faces and crystal edges are truncated by the surfaces of tetrahexahedroids. The rate of diamond resorption increases in all studied systems as fO2 and temperature are raised. In this case, water-enriched melts are the most aggressive media in the investigated T–fO2 interval. Among the most oxidized high-temperature melts, it is carbonatite melts depleted in SiO2 that provide the maximum rate of diamond resorption. Furthermore, the rates of diamond resorption we obtained are an order of magnitude higher than those previously measured in silicate melts containing CO2 and H2O, at fO2 values from the NNO buffer to NNO-2. Therefore, high oxygen fugacity, a temperature of ~1400 °C, and essentially carbonate composition of water-containing magma could provide a high intensity of diamond resorption at the mantle stage of magma ascent to the surface. Apparently, this process primarily influenced the formation of the appearance and preservation of natural diamond crystals in kimberlite pipes.
Ключевые слова: oxygen fugacity; Diamond resorption; Kimberlite melts; high-pressure experiment;
Издано: 2021
Физ. характеристика: 106166
Цитирование: 1. Arima, M., Kozai, Y., Diamond dissolution rates in kimberlitic melts at 1300–1500 °C in the graphite stability field. Eur. J. Mineral. 20 (2008), 357–364. 2. Ballhaus, C., Berry, R.F., Green, D.H., High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 107:1 (1991), 27–40. 3. Bataleva, Yu.V., Palyanov, Y.N., Sokol, A.G., Borzdov, Yu.M., Palyanova, G.A., Conditions for the origin of oxidized carbonate–silicate melts: implications for mantle metasomatism and diamond formation. Lithos 128–131 (2012), 113–125. 4. Bobrov, K., Shechter, H., Hoffman, A., Folman, M., Molecular oxygen adsorption and desorption from single crystal diamond (111) and (110) surfaces. Appl. Surf. Sci. 196 (2002), 173–180. 5. Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y., Prakapenka, V.B., Pressure–volume–temperature studies of metal–oxide pairs. COMPRES Annual Meeting, 2007 www.geol.umd.edu/,ajc/Posters/CampbellCOMPRES2007poster.pdf. 6. Chepurov, A.I., Khokhryakov, A.F., Sonin, V.M., Palyanov, Yu.N., About the forms of dissolution of diamond crystals in silicate melts at high pressure. Dokl. Akad. Nauk SSSR 285 (1985), 212–216 (in Russian). 7. Cull, F.A., Meyer, H.O.A., Oxidation of diamond at high temperature and 1 atm total pressure with controlled oxygen fugacity. Int. Kimberlite Conf. 4:1 (1986), 377–379. 8. De Truje, F.K., Roy, O., van der Laag, N.J., van Enckevort, W.J.P., Oxidative etching of diamond. Diam. Relat. Mater. 9 (2000), 929–934. 9. De Truje, F.K., van Veenendaal, E., van Enckevort, W.J.P., Flieg, E., Oxidative etching of cleaved of synthetic diamond {111} surfaces. Surf. Sci. 492 (2001), 91–105. 10. Dongre, A., Tappe, S., Kimberlite and carbonatite dykes within the Premier diatreme root (Cullinan Diamond Mine, South Africa): New insights to mineralogical-genetic classifications and magma CO2 degassing. Lithos 338–339 (2019), 155–173. 11. Fedortchouk, Y., A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth Sci. Rev. 193 (2019), 45–65. 12. Fedortchouk, Y., Canil, D., Carlson, J.A., Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib. Mineral. Petrol. 150 (2005), 54–69. 13. Fedortchouk, Y., Canil, D., Semenets, E., Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. Am. Mineral. 92 (2007), 1200–1212. 14. Foley, S.F., A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52 (2011), 1363–1391. 15. Frank, F.C., Puttic, K.E., Wilks, E.M., Etch pits and trigons of diamond: I. Philos. Mag. 3 (1958), 1262–1279. 16. Giuliani, A., Pearson, D.G., Soltys, A., Dalton, H., Phillips, D., Foley, S.F., Lim, E., Goemann, K., Griffin, W.L., Mitchell, R.H., Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv., 6(17), 2020, eaaz0424. 17. Grassi, D., Schmidt, M.W., Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contrib. Mineral. Petrol. 162 (2011), 169–191. 18. Harris, J.W., Vanse, E.R., Studies of the reaction between diamond and heated kimberlite. Contrib. Mineral. Petrol. 47:4 (1974), 237–244. 19. Hernlund, J., Leinenweber, K., Locke, D., Tyburczy, J., A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral. 91 (2006), 295–305. 20. Kadik, A.A., Lukanin, O.A., Degassing of the Upper Mantle upon Melting. 1986, Moscow, Nauka PH, 120 (in Russian). 21. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139 (2014), 145–167. 22. Kavanagh, J.L., Sparks, R.S.J., Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286 (2009), 404–413. 23. Keppler, H., Water solubility in carbonatite melts. Am. Mineral. 88 (2003), 1822–1824. 24. Khokhryakov, A.F., Palyanov, Y.N., Revealing of dislocations in diamond crystals by the selective etching method. J. Cryst. Growth 293 (2006), 469–474. 25. Khokhryakov, A.F., Palyanov, Y.N., The evolution of diamond morphology in the process of dissolution: experimental data. Am. Mineral. 92 (2007), 909–917. 26. Khokhryakov, A.F., Palyanov, Y.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Mineral. 95 (2010), 1508–1514. 27. Khokhryakov, A.F., Palyanov, Yu.N., Effect of crystal defects on diamond morphology during dissolution in the mantle. Am. Mineral. 100 (2015), 1528–1532. 28. Khokhryakov, A.F., Pal'yanov, Y.N., The morphology of diamond crystals, dissolved in the water containing silicate melts. Mineral. Zh. 12 (1990), 14–23 (in Russian). 29. Khokhryakov, A.F., Nechaev, D.V., Sokol, A.G., Microrelief of rounded diamond crystals as an indicator of the redox conditions of their resorption in a kimberlite melt. Crystals, 10, 2020, 233. 30. Kozai, Y., Arima, M., Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 °C and 1 GPa with controlled oxygen partial pressure. Am. Mineral. 90 (2005), 1759–1766. 31. Lang, A.R., Dislocation in diamond and the origin of trigons. Proceed. Royal Soc. A 278 (1964), 234–242. 32. Le Pioufle, A., Canil, D., Iron in monticellite as an oxygen barometer for kimberlite magmas. Contrib. Mineral. Petrol. 163 (2012), 1033–1046. 33. McCandless, T.E., Waldman, M.A., Gurney, J.J., Macro- and microdiamonds from Arkansas lamproites: Morphology, inclusions, and isotope geochemistry. Meyer, H.O.A., Leonardos, O.H., (eds.) Diamonds: Characterization, Genesis and Exploration, 5th International Kimberlite Conference, vol. 2, 1994, CPRM Special Publication, Companha de Pesquisa de Recursos Minerais, Brasilia, 78–97. 34. McCandless, T.E., Letendre, J., Eastoe, C.J., The morphology and carbon isotope chemistry of microdiamonds from the Dachine diamondiferous body, French Guiana. Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H., (eds.) Proceedings of the 7th International Kimberlite Conference, vol. 2, 1999, Red Roof Publishers, Cape Town, South Africa, 550–556. 35. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology. 1986, Plenum Press, New York, 442. 36. Mitchell, R.H., Giuliani, A., O'Brien, H., What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15 (2019), 381–386. 37. Moussallam, Y., Florian, P., Corradini, D., Morizet, Y., Sator, N., Vuilleumier, R., Guillot, B., Iacono-Marziano, G., Schmidt, B.C., Gaillard, F., The molecular structure of melts along the carbonatite–kimberlite–basalt compositional joint: CO2 and polymerisation. Earth Planet. Sci. Lett. 434 (2016), 129–140. 38. Mysen, B.O., Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids. Lithos 148 (2012), 228–246. 39. Mysen, B.O., Structure-property relationships of COHN-saturated silicate melt coexisting with COHN fluid: a review of in-situ, high-temperature, high-pressure experiments. Chem. Geol. 346 (2013), 113–124. 40. Palyanov, Yu.N., Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 10 (2010), 3169–3175. 41. Palyanov, Y.N., Khokhryakov, A.F., Kupriyanov, I.N., Crystallomorphological and crystallochemical indicators of diamond formation conditions. Crystallogr. Rep. 66 (2021), 142–155. 42. Rock, N.M.S., Lamprophyres. 1991, Blackie, New York, 284. 43. Rudenko, A.P., Kulakova, I.I., Shturman, V.L., Oxidation of natural diamond. Bagdasarov, G.P., (eds.) Novye dannye o mineralogii SSSR, 1979, Nauka, Moscow, 105–125 (in Russian). 44. Skvortsova, V.L., Shiryaev, A.A., Fedortchouk, Y., Influence of ions on diamond resorption. Diam. Relat. Mater., 104, 2020, 107764. 45. Smit, K.V., Shirey, S.B., Diamond from the deep. Gems & Gemol. 56 (2020), 148–155. 46. Sokol, A.G., Kruk, A.N., Role of molecular CO2 in the evolution of kimberlite magma: Experimental constraints at 5.5 GPa and 1200–1450 °C. Lithos, 386-387, 2021, 106042, 10.1016/j.lithos.2021.106042. 47. Sokol, A.G., Pal'yanov, Y.N., Pal'yanova, G.A., Tomilenko, A.A., Diamond crystallization in fluid and carbonate-fluid systems under mantle P–T conditions: 1. Fluid composition. Geochem. Int. 42 (2004), 830–838. 48. Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., Kruk, A.N., Sobolev, N.V., Melting experiments on the Udachnaya kimberlite at 6.3–7.5 GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine. Geochim. Cosmochim. Acta 101 (2013), 133–155. 49. Sokol, A.G., Khokhryakov, A.F., Palyanov, Y.N., Composition of primary kimberlite magma: constraints from melting and diamond dissolution experiments. Contrib. Mineral. Petrol., 170, 2015, 26. 50. Sokol, A.G., Kruk, A.N., Chebotarev, D.A., Palyanov, Y.N., Carbon-atite melt-peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248–251 (2016), 66–79. 51. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., Osorgin, N.Yu., Etching of diamond crystals in silicate melts in the presence of aqueous fluid under high P-T parameters. Geochem. Int. 35 (1997), 393–397. 52. Sonin, V.M., Zhimulev Chepurov, A.I., Afanasiev, V.P., Morphology of diamond crystals etched in a kimberlite melt at high Р-Т parameters. Izvestiya Vuzov. Geol. Razvedka. 1 (2002), 60–69 (in Russian). 53. Sun, Q., Alam, M., Relative oxidation behavior of chemical vapor deposited and type II a natural diamonds. J. Electrochem. Soc. 139 (1992), 933–936. 54. Sun, C., Dasgupta, R., Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506 (2019), 38–52. 55. Ulmer, P., Luth, R.W., The graphite-COH fluid equilibrium in P, T, fO2 space. Contrib. Mineral. Petrol. 106:3 (1991), 265–272. 56. Zhang, Z., Fedortchouk, Y., Hanley, J.J., Kerr, M., Diamond resorption and immiscibility of C-O-H fluid in kimberlites: evidence from experiments in H2O – CO2 – SiO2 – MgO – CaO system at 1–3 GPa. Lithos, 380-381, 2021, 105858, 10.1016/j.lithos.2020.105858 In this issue. 57. Zhang, Y., Xu, Z., Zhu, M., Wang, H., Silicate melt properties and volcanic eruptions. Rev. Geophys., 45, 2007, RG4004. 58. Zhang, Z., Fedortchouk, Y., Hanley, J.J., Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos 227 (2015), 179–193.