Цитирование: | 1. Arima, M., Kozai, Y., Diamond dissolution rates in kimberlitic melts at 1300–1500 °C in the graphite stability field. Eur. J. Mineral. 20 (2008), 357–364.
2. Ballhaus, C., Berry, R.F., Green, D.H., High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 107:1 (1991), 27–40.
3. Bataleva, Yu.V., Palyanov, Y.N., Sokol, A.G., Borzdov, Yu.M., Palyanova, G.A., Conditions for the origin of oxidized carbonate–silicate melts: implications for mantle metasomatism and diamond formation. Lithos 128–131 (2012), 113–125.
4. Bobrov, K., Shechter, H., Hoffman, A., Folman, M., Molecular oxygen adsorption and desorption from single crystal diamond (111) and (110) surfaces. Appl. Surf. Sci. 196 (2002), 173–180.
5. Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y., Prakapenka, V.B., Pressure–volume–temperature studies of metal–oxide pairs. COMPRES Annual Meeting, 2007 www.geol.umd.edu/,ajc/Posters/CampbellCOMPRES2007poster.pdf.
6. Chepurov, A.I., Khokhryakov, A.F., Sonin, V.M., Palyanov, Yu.N., About the forms of dissolution of diamond crystals in silicate melts at high pressure. Dokl. Akad. Nauk SSSR 285 (1985), 212–216 (in Russian).
7. Cull, F.A., Meyer, H.O.A., Oxidation of diamond at high temperature and 1 atm total pressure with controlled oxygen fugacity. Int. Kimberlite Conf. 4:1 (1986), 377–379.
8. De Truje, F.K., Roy, O., van der Laag, N.J., van Enckevort, W.J.P., Oxidative etching of diamond. Diam. Relat. Mater. 9 (2000), 929–934.
9. De Truje, F.K., van Veenendaal, E., van Enckevort, W.J.P., Flieg, E., Oxidative etching of cleaved of synthetic diamond {111} surfaces. Surf. Sci. 492 (2001), 91–105.
10. Dongre, A., Tappe, S., Kimberlite and carbonatite dykes within the Premier diatreme root (Cullinan Diamond Mine, South Africa): New insights to mineralogical-genetic classifications and magma CO2 degassing. Lithos 338–339 (2019), 155–173.
11. Fedortchouk, Y., A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth Sci. Rev. 193 (2019), 45–65.
12. Fedortchouk, Y., Canil, D., Carlson, J.A., Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib. Mineral. Petrol. 150 (2005), 54–69.
13. Fedortchouk, Y., Canil, D., Semenets, E., Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. Am. Mineral. 92 (2007), 1200–1212.
14. Foley, S.F., A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52 (2011), 1363–1391.
15. Frank, F.C., Puttic, K.E., Wilks, E.M., Etch pits and trigons of diamond: I. Philos. Mag. 3 (1958), 1262–1279.
16. Giuliani, A., Pearson, D.G., Soltys, A., Dalton, H., Phillips, D., Foley, S.F., Lim, E., Goemann, K., Griffin, W.L., Mitchell, R.H., Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv., 6(17), 2020, eaaz0424.
17. Grassi, D., Schmidt, M.W., Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contrib. Mineral. Petrol. 162 (2011), 169–191.
18. Harris, J.W., Vanse, E.R., Studies of the reaction between diamond and heated kimberlite. Contrib. Mineral. Petrol. 47:4 (1974), 237–244.
19. Hernlund, J., Leinenweber, K., Locke, D., Tyburczy, J., A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral. 91 (2006), 295–305.
20. Kadik, A.A., Lukanin, O.A., Degassing of the Upper Mantle upon Melting. 1986, Moscow, Nauka PH, 120 (in Russian).
21. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139 (2014), 145–167.
22. Kavanagh, J.L., Sparks, R.S.J., Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286 (2009), 404–413.
23. Keppler, H., Water solubility in carbonatite melts. Am. Mineral. 88 (2003), 1822–1824.
24. Khokhryakov, A.F., Palyanov, Y.N., Revealing of dislocations in diamond crystals by the selective etching method. J. Cryst. Growth 293 (2006), 469–474.
25. Khokhryakov, A.F., Palyanov, Y.N., The evolution of diamond morphology in the process of dissolution: experimental data. Am. Mineral. 92 (2007), 909–917.
26. Khokhryakov, A.F., Palyanov, Y.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Mineral. 95 (2010), 1508–1514.
27. Khokhryakov, A.F., Palyanov, Yu.N., Effect of crystal defects on diamond morphology during dissolution in the mantle. Am. Mineral. 100 (2015), 1528–1532.
28. Khokhryakov, A.F., Pal'yanov, Y.N., The morphology of diamond crystals, dissolved in the water containing silicate melts. Mineral. Zh. 12 (1990), 14–23 (in Russian).
29. Khokhryakov, A.F., Nechaev, D.V., Sokol, A.G., Microrelief of rounded diamond crystals as an indicator of the redox conditions of their resorption in a kimberlite melt. Crystals, 10, 2020, 233.
30. Kozai, Y., Arima, M., Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 °C and 1 GPa with controlled oxygen partial pressure. Am. Mineral. 90 (2005), 1759–1766.
31. Lang, A.R., Dislocation in diamond and the origin of trigons. Proceed. Royal Soc. A 278 (1964), 234–242.
32. Le Pioufle, A., Canil, D., Iron in monticellite as an oxygen barometer for kimberlite magmas. Contrib. Mineral. Petrol. 163 (2012), 1033–1046.
33. McCandless, T.E., Waldman, M.A., Gurney, J.J., Macro- and microdiamonds from Arkansas lamproites: Morphology, inclusions, and isotope geochemistry. Meyer, H.O.A., Leonardos, O.H., (eds.) Diamonds: Characterization, Genesis and Exploration, 5th International Kimberlite Conference, vol. 2, 1994, CPRM Special Publication, Companha de Pesquisa de Recursos Minerais, Brasilia, 78–97.
34. McCandless, T.E., Letendre, J., Eastoe, C.J., The morphology and carbon isotope chemistry of microdiamonds from the Dachine diamondiferous body, French Guiana. Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H., (eds.) Proceedings of the 7th International Kimberlite Conference, vol. 2, 1999, Red Roof Publishers, Cape Town, South Africa, 550–556.
35. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology. 1986, Plenum Press, New York, 442.
36. Mitchell, R.H., Giuliani, A., O'Brien, H., What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15 (2019), 381–386.
37. Moussallam, Y., Florian, P., Corradini, D., Morizet, Y., Sator, N., Vuilleumier, R., Guillot, B., Iacono-Marziano, G., Schmidt, B.C., Gaillard, F., The molecular structure of melts along the carbonatite–kimberlite–basalt compositional joint: CO2 and polymerisation. Earth Planet. Sci. Lett. 434 (2016), 129–140.
38. Mysen, B.O., Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids. Lithos 148 (2012), 228–246.
39. Mysen, B.O., Structure-property relationships of COHN-saturated silicate melt coexisting with COHN fluid: a review of in-situ, high-temperature, high-pressure experiments. Chem. Geol. 346 (2013), 113–124.
40. Palyanov, Yu.N., Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 10 (2010), 3169–3175.
41. Palyanov, Y.N., Khokhryakov, A.F., Kupriyanov, I.N., Crystallomorphological and crystallochemical indicators of diamond formation conditions. Crystallogr. Rep. 66 (2021), 142–155.
42. Rock, N.M.S., Lamprophyres. 1991, Blackie, New York, 284.
43. Rudenko, A.P., Kulakova, I.I., Shturman, V.L., Oxidation of natural diamond. Bagdasarov, G.P., (eds.) Novye dannye o mineralogii SSSR, 1979, Nauka, Moscow, 105–125 (in Russian).
44. Skvortsova, V.L., Shiryaev, A.A., Fedortchouk, Y., Influence of ions on diamond resorption. Diam. Relat. Mater., 104, 2020, 107764.
45. Smit, K.V., Shirey, S.B., Diamond from the deep. Gems & Gemol. 56 (2020), 148–155.
46. Sokol, A.G., Kruk, A.N., Role of molecular CO2 in the evolution of kimberlite magma: Experimental constraints at 5.5 GPa and 1200–1450 °C. Lithos, 386-387, 2021, 106042, 10.1016/j.lithos.2021.106042.
47. Sokol, A.G., Pal'yanov, Y.N., Pal'yanova, G.A., Tomilenko, A.A., Diamond crystallization in fluid and carbonate-fluid systems under mantle P–T conditions: 1. Fluid composition. Geochem. Int. 42 (2004), 830–838.
48. Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., Kruk, A.N., Sobolev, N.V., Melting experiments on the Udachnaya kimberlite at 6.3–7.5 GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine. Geochim. Cosmochim. Acta 101 (2013), 133–155.
49. Sokol, A.G., Khokhryakov, A.F., Palyanov, Y.N., Composition of primary kimberlite magma: constraints from melting and diamond dissolution experiments. Contrib. Mineral. Petrol., 170, 2015, 26.
50. Sokol, A.G., Kruk, A.N., Chebotarev, D.A., Palyanov, Y.N., Carbon-atite melt-peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248–251 (2016), 66–79.
51. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., Osorgin, N.Yu., Etching of diamond crystals in silicate melts in the presence of aqueous fluid under high P-T parameters. Geochem. Int. 35 (1997), 393–397.
52. Sonin, V.M., Zhimulev Chepurov, A.I., Afanasiev, V.P., Morphology of diamond crystals etched in a kimberlite melt at high Р-Т parameters. Izvestiya Vuzov. Geol. Razvedka. 1 (2002), 60–69 (in Russian).
53. Sun, Q., Alam, M., Relative oxidation behavior of chemical vapor deposited and type II a natural diamonds. J. Electrochem. Soc. 139 (1992), 933–936.
54. Sun, C., Dasgupta, R., Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506 (2019), 38–52.
55. Ulmer, P., Luth, R.W., The graphite-COH fluid equilibrium in P, T, fO2 space. Contrib. Mineral. Petrol. 106:3 (1991), 265–272.
56. Zhang, Z., Fedortchouk, Y., Hanley, J.J., Kerr, M., Diamond resorption and immiscibility of C-O-H fluid in kimberlites: evidence from experiments in H2O – CO2 – SiO2 – MgO – CaO system at 1–3 GPa. Lithos, 380-381, 2021, 105858, 10.1016/j.lithos.2020.105858 In this issue.
57. Zhang, Y., Xu, Z., Zhu, M., Wang, H., Silicate melt properties and volcanic eruptions. Rev. Geophys., 45, 2007, RG4004.
58. Zhang, Z., Fedortchouk, Y., Hanley, J.J., Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos 227 (2015), 179–193.
|