Цитирование: | 1. G.J., Snyder, Energy Environ. Sci. 10 (11), 2280–2283 (2017). doi: 10.1039/C7EE02007D
2. L.B., Kong. Waste Energy Harvesting. Lecture Notes in Energy, 24. (Springer, Berlin, 2014), pp. 263–403.
3. J.P., Heremans, V., Jovovic, E.S., Toberer, A., Saramat, K., Kurosaki, A., Charoenphakdee, S., Yamanaka and G.J., Snyder, Science. 321 (5888), 554–557 (2008). doi: 10.1126/science.1159725
4. Y., Pei, A., Lalonde, S., Iwanaga and G.J., Snyder, Energy Environ. Sci. 4 (6), 2085 (2011). doi: 10.1039/c0ee00456a
5. Y., Pei, X., Shi, A., Lalonde, H., Wang, L., Chen and G.J., Snyder, Nature. 473 (7345), 66–69 (2011). doi: 10.1038/nature09996
6. D., Quick, World’s Most Efficient Thermoelectric Material Developed. Gizmag (2012).
7. K., Biswas, J., He, I.D., Blum, C.I., Wu, T.P., Hogan, D.N., Seidman, V.P., Dravid and M.G., Kanatzidis, Nature. 489 (7416), 414–418 (2018). doi: 10.1038/nature11439
8. A.G., Redfield, IBM J. Res. Dev. 1 (1), 19–31 (1957). doi: 10.1147/rd.11.0019
9. A., Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems (OUP Oxford, New York, 2006).
10. S.P., Webb, T., Iordanov and S., Hammes-Schiffer, J. Chem. Phys. 117 (9), 4106–4118 (2002). doi: 10.1063/1.1494980
11. S., Hammes-Schiffer, Abstracts of Papers of the American Chemical Society, 242 (2011).
12. J.C., Tully, J. Chem. Phys. 93 (2), 1061–1071 (1990). doi: 10.1063/1.459170
13. S.V., Kilina, C.F., Craig, D.S., Kilin, O.V., Prezhdo, J. Phys. Chem. C. 111 (12), 4871–4878 (2007). doi: 10.1021/jp0669052.
14. S.V., Kilina, D.S., Kilin and O.V., Prezhdo, Acs Nano. 3 (1), 93–99 (2009). doi: 10.1021/nn800674n
15. S.V., Kilina, D.S., Kilin, V.V., Prezhdo, O.V., Prezhdo, J. Phys. Chem. C. 115 (44), 21641–21651 (2011). doi: 10.1021/jp206594e
16. S., Fernandez-Alberti, V.D., Kleiman, S., Tretiak, A.E., Roitberg, J. Phys. Chem. A. 113 (26), 7535–7542 (2009). doi: 10.1021/jp900904q
17. S., Fernandez-Alberti, V.D., Kleiman, S., Tretiak, A.E., Roitberg, J. Phys. Chem. Lett. 1 (18), 2699–2704 (2010). doi: 10.1021/jz100794z
18. T., Nelson, S., Fernandez-Alberti, V., Chernyak, A.E., Roitberg, and S., Tretiak, J. Phys. Chem. B. 115 (18), 5402–5414 (2011). doi: 10.1021/jp109522g
19. T., Nelson, S., Fernandez-Alberti, V., Chernyak, A.E., Roitberg, S., Tretiak, J. Chem. Phys. 136 (5), (2012). doi: 10.1063/1.3680565
20. L.G.C., Rego and V.S., Batista, J. Am. Chem. Soc. 125 (26), 7989–7997 (2003). doi: 10.1021/ja0346330
21. C.F., Craig, W.R., Duncan and O.V., Prezhdo, Phys. Rev. Lett. 95 (16), (2005). doi: 10.1103/PhysRevLett.95.163001
22. D.G., Tempel and A., Aspuru-Guzik, Chem. Phys. 391 (1), 130–142 (2011). doi: 10.1016/j.chemphys.2011.03.014
23. J.A., Parkhill, D.G., Tempel and A., Aspuru-Guzik, J. Chem. Phys. 136 (10), (2012). doi: 10.1063/1.3689858
24. D., Egorova, M., Thoss, W., Domcke, J. Chem. Phys. 119 (5), 2761–2773 (2003). doi: 10.1063/1.1587121
25. W.T., Pollard and R.A., Friesner, J. Chem. Phys. 100 (7), 5054–5065 (1994). doi: 10.1063/1.467222
26. W.T., Pollard, A.K., Felts and R.A., Friesner, Adv. Chem. Phys., Vol Xciii. 93, 77–134 (1996).
27. J.M., Jean, R.A., Friesner and G.R., Fleming, J. Chem. Phys. 96 (8), 5827–5842 (1992). doi: 10.1063/1.462858
28. V., Sundstrom, T., Pullerits and R., van Grondelle, J. Phys. Chem. B. 103 (13), 2327–2346 (1999). doi: 10.1021/jp983722+
29. O., Kuhn, V., May and M., Schreiber, J. Chem. Phys. 101 (12), 10404–10415 (1994). doi: 10.1063/1.467921
30. W.B., Davis, M.R., Wasielewski, M.A., Ratner, V., Mujica, A., Nitzan, J. Phys. Chem. A. 101 (35), 6158–6164 (1997). doi: 10.1021/jp970909c
31. P.A., Apanasevich, S.Y., Kilin, A.P., Nizovtsev, N.S., Onishchenko, J. Opt. Soc. Am. B-Opt. Phys. 3 (4), 587–594 (1986). doi: 10.1364/JOSAB.3.000587
32. G., Kolesov and Y., Dahnovsky, Phys. Rev. B. 85 (24), 241309 (2012). doi: 10.1103/PhysRevB.85.241309
33. D.S., Kilin and D.A., Micha, J. Phys. Chem. Lett. 1 (7), 1073–1077 (2010). doi: 10.1021/jz100122f
34. J., Chen, A., Schmitz and D.S., Kilin, Int. J. Quantum Chem. 112, 3879 (2012). doi: 10.1002/qua.24291
35. P., Hohenberg and W., Kohn, Phys. Rev. 136 (3B), B864–B871 (1964). doi: 10.1103/PhysRev.136.B864
36. G., Kresse and J., Furthmüller, Phys. Rev. B. 54 (16), 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169
37. W., Kohn and L.J., Sham, Phys. Rev. 140 (4A), A1133–A1138 (1965). doi: 10.1103/PhysRev.140.A1133
38. J.P., Perdew, K., Burke and M., Ernzerhof, Phys. Rev. Lett. 77 (18), 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865
39. J.P., Perdew, K., Burke, and M., Ernzerhof, Phys. Rev. Lett. 78 (7), 1396 (1997). doi: 10.1103/PhysRevLett.78.1396
40. J.M., Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972). Chap. 7, pp. 211–254.
41. D.S., Kilin and D.A., Micha, Chem. Phys. Lett. 461 (4–6), 266–270 (2008). doi: 10.1016/j.cplett.2008.07.031
42. D.S., Kilin and D.A., Micha, J. Phys. Chem. C. 113 (9), 3530–3542 (2009). doi: 10.1021/jp808908x
43. D.S., Kilin and D.A., Micha, J. Phys. Chem. C. 115 (3), 770–775 (2011). doi: 10.1021/jp110756u
44. C., Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996; 197–232).
45. J., Heyd, G.E., Scuseria and M., Ernzerhof, J. Chem. Phys. 118 (18), 8207–8215 (2003). doi: 10.1063/1.1564060
46. J., Heyd, G.E., Scuseria, and M., Ernzerhof, J. Chem. Phys. 124 (21), 219906 (2006). doi: 10.1063/1.2204597
47. A., Goyal, P., Gorai, E.S., Toberer and V., Stevanović, npj Comput. Mater. 3 (1), 42 (2017). doi: 10.1038/s41524-017-0047-6
48. A., Forde, T., Inerbaev, E.K., Hobbie and D.S., Kilin, J. Am. Chem. Soc. 141 (10), 4388–4397 (2019). doi: 10.1021/jacs.8b13385
49. Y., Han and D.S., Kilin, J. Phys. Chem. Lett. 11 (23), 9983–9989 (2020). doi: 10.1021/acs.jpclett.0c02973
50. N., Voudoukis, Eur. J. Electr. Eng. Comput. Sci. 2 (1), (2018). doi: 10.24018/ejece.2018.2.1.13
|