Инд. авторы: Gima K., Inerbaev T.M., Kilin D.S.
Заглавие: Excited state dynamics in a sodium and iodine co-doped lead telluride nanowire
Библ. ссылка: Gima K., Inerbaev T.M., Kilin D.S. Excited state dynamics in a sodium and iodine co-doped lead telluride nanowire // Molecular Physics. - 2021. - Art.e1874557. - ISSN 0026-8976. - EISSN 1362-3028.
Внешние системы: DOI: 10.1080/00268976.2021.1874557; РИНЦ: 44988538;
Реферат: eng: Materials that convert wasted heat into electricity are needed to help solve global warming and other climate challenges. Thermoelectric nanowires are novel metamaterials for such applications. Non-adiabatic coupling computations are critical in understanding thermally activated charge transfer in thermoelectric materials. Here, non-adiabatic computations are used to evaluate electron relaxation rates in lead telluride nanowires. This work reports results on PbTe (lead telluride) atomistic models doped with sodium and iodine that contain 288 atoms in simulation cells with periodic boundary conditions. The calculations are performed on the basis of ground-state DFT under the VASP software. The transitions between states are modelled in terms of Redfield equation of motion parameterised by on-the-fly non-adiabatic couplings along thermalised molecular dynamic trajectory. The initial states are approximated by the promotion of an electron from occupied to unoccupied Kohn–Sham orbital. In each transition, the change of the energy and spatial charge distribution with respect to time were calculated, demonstrating formation of charge transfer. The trends of electron and hole relaxation rates comply with the energy gap law.
Ключевые слова: Non-adiabatic; co-doping; charge transfer; lead telluride; density matrix;
Издано: 2021
Цитирование: 1. G.J., Snyder, Energy Environ. Sci. 10 (11), 2280–2283 (2017). doi: 10.1039/C7EE02007D 2. L.B., Kong. Waste Energy Harvesting. Lecture Notes in Energy, 24. (Springer, Berlin, 2014), pp. 263–403. 3. J.P., Heremans, V., Jovovic, E.S., Toberer, A., Saramat, K., Kurosaki, A., Charoenphakdee, S., Yamanaka and G.J., Snyder, Science. 321 (5888), 554–557 (2008). doi: 10.1126/science.1159725 4. Y., Pei, A., Lalonde, S., Iwanaga and G.J., Snyder, Energy Environ. Sci. 4 (6), 2085 (2011). doi: 10.1039/c0ee00456a 5. Y., Pei, X., Shi, A., Lalonde, H., Wang, L., Chen and G.J., Snyder, Nature. 473 (7345), 66–69 (2011). doi: 10.1038/nature09996 6. D., Quick, World’s Most Efficient Thermoelectric Material Developed. Gizmag (2012). 7. K., Biswas, J., He, I.D., Blum, C.I., Wu, T.P., Hogan, D.N., Seidman, V.P., Dravid and M.G., Kanatzidis, Nature. 489 (7416), 414–418 (2018). doi: 10.1038/nature11439 8. A.G., Redfield, IBM J. Res. Dev. 1 (1), 19–31 (1957). doi: 10.1147/rd.11.0019 9. A., Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems (OUP Oxford, New York, 2006). 10. S.P., Webb, T., Iordanov and S., Hammes-Schiffer, J. Chem. Phys. 117 (9), 4106–4118 (2002). doi: 10.1063/1.1494980 11. S., Hammes-Schiffer, Abstracts of Papers of the American Chemical Society, 242 (2011). 12. J.C., Tully, J. Chem. Phys. 93 (2), 1061–1071 (1990). doi: 10.1063/1.459170 13. S.V., Kilina, C.F., Craig, D.S., Kilin, O.V., Prezhdo, J. Phys. Chem. C. 111 (12), 4871–4878 (2007). doi: 10.1021/jp0669052. 14. S.V., Kilina, D.S., Kilin and O.V., Prezhdo, Acs Nano. 3 (1), 93–99 (2009). doi: 10.1021/nn800674n 15. S.V., Kilina, D.S., Kilin, V.V., Prezhdo, O.V., Prezhdo, J. Phys. Chem. C. 115 (44), 21641–21651 (2011). doi: 10.1021/jp206594e 16. S., Fernandez-Alberti, V.D., Kleiman, S., Tretiak, A.E., Roitberg, J. Phys. Chem. A. 113 (26), 7535–7542 (2009). doi: 10.1021/jp900904q 17. S., Fernandez-Alberti, V.D., Kleiman, S., Tretiak, A.E., Roitberg, J. Phys. Chem. Lett. 1 (18), 2699–2704 (2010). doi: 10.1021/jz100794z 18. T., Nelson, S., Fernandez-Alberti, V., Chernyak, A.E., Roitberg, and S., Tretiak, J. Phys. Chem. B. 115 (18), 5402–5414 (2011). doi: 10.1021/jp109522g 19. T., Nelson, S., Fernandez-Alberti, V., Chernyak, A.E., Roitberg, S., Tretiak, J. Chem. Phys. 136 (5), (2012). doi: 10.1063/1.3680565 20. L.G.C., Rego and V.S., Batista, J. Am. Chem. Soc. 125 (26), 7989–7997 (2003). doi: 10.1021/ja0346330 21. C.F., Craig, W.R., Duncan and O.V., Prezhdo, Phys. Rev. Lett. 95 (16), (2005). doi: 10.1103/PhysRevLett.95.163001 22. D.G., Tempel and A., Aspuru-Guzik, Chem. Phys. 391 (1), 130–142 (2011). doi: 10.1016/j.chemphys.2011.03.014 23. J.A., Parkhill, D.G., Tempel and A., Aspuru-Guzik, J. Chem. Phys. 136 (10), (2012). doi: 10.1063/1.3689858 24. D., Egorova, M., Thoss, W., Domcke, J. Chem. Phys. 119 (5), 2761–2773 (2003). doi: 10.1063/1.1587121 25. W.T., Pollard and R.A., Friesner, J. Chem. Phys. 100 (7), 5054–5065 (1994). doi: 10.1063/1.467222 26. W.T., Pollard, A.K., Felts and R.A., Friesner, Adv. Chem. Phys., Vol Xciii. 93, 77–134 (1996). 27. J.M., Jean, R.A., Friesner and G.R., Fleming, J. Chem. Phys. 96 (8), 5827–5842 (1992). doi: 10.1063/1.462858 28. V., Sundstrom, T., Pullerits and R., van Grondelle, J. Phys. Chem. B. 103 (13), 2327–2346 (1999). doi: 10.1021/jp983722+ 29. O., Kuhn, V., May and M., Schreiber, J. Chem. Phys. 101 (12), 10404–10415 (1994). doi: 10.1063/1.467921 30. W.B., Davis, M.R., Wasielewski, M.A., Ratner, V., Mujica, A., Nitzan, J. Phys. Chem. A. 101 (35), 6158–6164 (1997). doi: 10.1021/jp970909c 31. P.A., Apanasevich, S.Y., Kilin, A.P., Nizovtsev, N.S., Onishchenko, J. Opt. Soc. Am. B-Opt. Phys. 3 (4), 587–594 (1986). doi: 10.1364/JOSAB.3.000587 32. G., Kolesov and Y., Dahnovsky, Phys. Rev. B. 85 (24), 241309 (2012). doi: 10.1103/PhysRevB.85.241309 33. D.S., Kilin and D.A., Micha, J. Phys. Chem. Lett. 1 (7), 1073–1077 (2010). doi: 10.1021/jz100122f 34. J., Chen, A., Schmitz and D.S., Kilin, Int. J. Quantum Chem. 112, 3879 (2012). doi: 10.1002/qua.24291 35. P., Hohenberg and W., Kohn, Phys. Rev. 136 (3B), B864–B871 (1964). doi: 10.1103/PhysRev.136.B864 36. G., Kresse and J., Furthmüller, Phys. Rev. B. 54 (16), 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169 37. W., Kohn and L.J., Sham, Phys. Rev. 140 (4A), A1133–A1138 (1965). doi: 10.1103/PhysRev.140.A1133 38. J.P., Perdew, K., Burke and M., Ernzerhof, Phys. Rev. Lett. 77 (18), 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865 39. J.P., Perdew, K., Burke, and M., Ernzerhof, Phys. Rev. Lett. 78 (7), 1396 (1997). doi: 10.1103/PhysRevLett.78.1396 40. J.M., Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972). Chap. 7, pp. 211–254. 41. D.S., Kilin and D.A., Micha, Chem. Phys. Lett. 461 (4–6), 266–270 (2008). doi: 10.1016/j.cplett.2008.07.031 42. D.S., Kilin and D.A., Micha, J. Phys. Chem. C. 113 (9), 3530–3542 (2009). doi: 10.1021/jp808908x 43. D.S., Kilin and D.A., Micha, J. Phys. Chem. C. 115 (3), 770–775 (2011). doi: 10.1021/jp110756u 44. C., Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996; 197–232). 45. J., Heyd, G.E., Scuseria and M., Ernzerhof, J. Chem. Phys. 118 (18), 8207–8215 (2003). doi: 10.1063/1.1564060 46. J., Heyd, G.E., Scuseria, and M., Ernzerhof, J. Chem. Phys. 124 (21), 219906 (2006). doi: 10.1063/1.2204597 47. A., Goyal, P., Gorai, E.S., Toberer and V., Stevanović, npj Comput. Mater. 3 (1), 42 (2017). doi: 10.1038/s41524-017-0047-6 48. A., Forde, T., Inerbaev, E.K., Hobbie and D.S., Kilin, J. Am. Chem. Soc. 141 (10), 4388–4397 (2019). doi: 10.1021/jacs.8b13385 49. Y., Han and D.S., Kilin, J. Phys. Chem. Lett.   11 (23), 9983–9989 (2020). doi: 10.1021/acs.jpclett.0c02973 50. N., Voudoukis, Eur. J. Electr. Eng. Comput. Sci. 2 (1), (2018). doi: 10.24018/ejece.2018.2.1.13