Инд. авторы: Gavryushkin P.N., Sagatov N., Sagatova D., Belonoshko A.B., Zhitova E., Krzhizhanovskaya M.G., Recnik A., Alexandrov E.V., Medrish I.V., Popov Z.I., Litasov K.D.
Заглавие: Metastable structures of caco3and their role in transformation of calcite to aragonite and postaragonite
Библ. ссылка: Gavryushkin P.N., Sagatov N., Sagatova D., Belonoshko A.B., Zhitova E., Krzhizhanovskaya M.G., Recnik A., Alexandrov E.V., Medrish I.V., Popov Z.I., Litasov K.D. Metastable structures of caco3and their role in transformation of calcite to aragonite and postaragonite // Crystal Growth & Design. - 2021. - ISSN 1528-7483. - EISSN 1528-7505.
Внешние системы: DOI: 10.1021/acs.cgd.0c00589; РИНЦ: 45034342;
Реферат: eng: Using molecular dynamics simulation and evolutionary metadynamic calculations, a series of structures were revealed that possessed enthalpies and Gibbs energies lower than those of aragonite but higher than those of calcite. The structures are polytypes of calcite, differing in the stacking sequence of close-packed (cp) Ca layers. The two- and six-layered polytypes have hexagonal symmetry P6322 and were named hexarag and hexite, respectively. Hexarag is similar to aragonite, but with all the triangles placed on the middle distance between the cp layers. On the basis of the structures found, a two-step mechanism for the transformation of aragonite to calcite is suggested. In the first step, CO3 triangles migrate to halfway between the Ca layers with the formation of hexarag. In the second step, the two-layered cp (hcp) hexarag structure transforms into three-layered cp (fcc) calcite through a series of many-layered polytypes. The topotactic character of the transformation of aragonite to calcite, with [001] of aragonite being parallel to [0001] of calcite, is consistent with the suggested mechanism. High-temperature X-ray powder diffraction experiments did not reveal hexarag reflections. To assess the possibility of the formation of the polytypes found in nature or experiments, a TEM analysis of ground aragonite was performed. A grain was found that had six superstructure reflections in a direction perpendicular to the plane of the cp layer. This grain is believed to correspond to one of the predicted polytypes, with the diffuse character of the diffraction spots indicating a partial disordering of the cp layer stacking. A topological analysis was also performed, along with energy calculations, of the metastable high-pressure polymorphs CaCO3-II, -III, -IIIb, and -VI. The similarity of CaCO3-II, -II, and -IIIb to the calcite structure and the small energy difference explain the metastable formation of these polymorphs during the cold compression of calcite. On the basis of the performed analysis, the evolution of the CaCO3 cation array at calcite to a post-aragonite transformation is described.
Издано: 2021
Цитирование: 1. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704, 10.1063/1.2210932 2. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B. 2015, 91, 104101, 10.1103/PhysRevB.91.104101 3. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-III and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977 4. Merlini, M.; Hanfland, M.; Crichton, W. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the earth's mantle. Earth Planet. Sci. Lett. 2012, 333, 265-271, 10.1016/j.epsl.2012.04.036 5. Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W.; Hanfland, M. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys. Chem. Miner. 2015, 42, 29-43, 10.1007/s00269-014-0696-7 6. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. PVT equation of state of CaCO3aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91, 10.1016/j.pepi.2017.02.006 7. Koch-Müller, M.; Jahn, S.; Birkholz, N.; Ritter, E.; Schade, U. Phase transitions in the system CaCO3at high p and t determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys. Chem. Miner. 2016, 43, 545-561, 10.1007/s00269-016-0815-8 8. Ono, S.; Kikegawa, T.; Ohishi, Y.; Tsuchiya, J. Post-aragonite phase transformation in CaCO3at 40 GPa. Am. Mineral. 2005, 90, 667-671, 10.2138/am.2005.1610 9. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R. et al. Raman spectroscopy and x-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B. Phys. 2017, 96, 104101, 10.1103/PhysRevB.96.104101 10. Litasov, K.; Shatskiy, A.; Podborodnikov, I.; Arefiev, A. Phase diagrams of carbonate materials at high pressures, with implications for melting and carbon cycling in the deep earth. In American Geophysical Union Geophysical Monograph, Carbon in Earth's Interior; John Wiley & Sons, 2020; Chapter 14, pp 137-165 10.1002/9781119508229.ch14. 11. Davis, B. L.; Adams, L. H. Kinetics of the calcite ↔ aragonite transformation. Journal of Geophysical Research 1965, 70, 433-441, 10.1029/JZ070i002p00433 12. Chen, S.-F.; Yu, S.-H.; Jiang, J.; Li, F.; Liu, Y. Polymorph discrimination of CaCO3mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. Chem. Mater. 2006, 18, 115-122, 10.1021/cm0519028 13. Bragg, W. The structure of aragonite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1924, 105, 16-39, 10.1098/rspa.1924.0002 14. Antao, S. M.; Hassan, I. Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffraction data. Can. Mineral. 2010, 48, 1225-1236, 10.3749/canmin.48.5.1225 15. Iguchi, Y.; Senna, M. Mechanochemical polymorphic transformation and its stationary state between aragonite and calcite i. effects of preliminary annealing. Powder Technol. 1985, 43, 155-162, 10.1016/0032-5910(85)87007-8 16. Isobe, T.; Senna, M. Differences in thermal and mechanochemical polymorphism. effects of impurity on the system aragonite-calcite. J. Chem. Soc., Faraday Trans. 1 1988, 84, 1199-1209, 10.1039/f19888401199 17. Johannes, W.; Puhan, D. The calcite-aragonite transition, reinvestigated. Contrib. Mineral. Petrol. 1971, 31, 28-38, 10.1007/BF00373389 18. Blatov, V. A. Crystal structures of inorganic oxoacid salts perceived as cation array: a periodic-graph approach. In Inorganic 3D Structures; Springer: 2011; pp 31-66. 19. Santillán, J.; Williams, Q. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am. Mineral. 2004, 89, 1348-1352, 10.2138/am-2004-8-925 20. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169, 10.1103/PhysRevB.54.11169 21. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0 22. Dickens, B.; Bowen, J. Refinement of the crystal structure of the aragonite phase of CaCO3. J. Res. Natl. Bur. Stand., Sect. A 1971, 75A, 27-32, 10.6028/jres.075A.004 23. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244, 10.1103/PhysRevB.45.13244 24. Gavryushkin, P. N.; Rečnik, A.; Daneu, N.; Sagatov, N.; Belonoshko, A. B.; Popov, Z. I.; Ribić, V.; Litasov, K. D. Temperature induced twinning in aragonite: transmission electron microscopy experiments and ab initio calculations. Z. Kristallogr.-Cryst. Mater. 2019, 234, 79-84, 10.1515/zkri-2018-2109 25. Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem. 2010, 71, 271-298, 10.2138/rmg.2010.71.13 26. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237, 10.1021/ar1001318 27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/PhysRevLett.77.3865 28. Graf, D. L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 1961, 46, 1283-1316 29. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021 30. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188, 10.1103/PhysRevB.13.5188 31. Merrill, L.; Bassett, W. A. The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, 31, 343-349, 10.1107/S0567740875002774 32. Muller, G.; Gatsner, M. Neues jahrbuch für mineralogie monatshefte. Chemical analysis 1971, 10, 466-469 33. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576-3586, 10.1021/cg500498k 34. Stokes, H. T.; Hatch, D. M. Findsym: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237-238, 10.1107/S0021889804031528 35. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970 36. O'Keeffe, M.; Peskov, M.; Ramsden, S.; Yaghi, O. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782, 10.1021/ar800124u 37. Bruker, A. Topas v4. 2: General profile and structure analysis software for powder diffraction data; Bruker AXS: Karlsruhe, Germany, 2009. 38. Antao, S. M.; Hassan, I. The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can. Mineral. 2009, 47, 1245-1255, 10.3749/canmin.47.5.1245 39. Langreiter, T.; Kahlenberg, V. TEV-a program for the determination and visualization of the thermal expansion tensor from diffraction data. Institute of Mineralogy and Petrography. University of Innsbruck, Austria, 2014. 40. Miyake, A.; Kawano, J. High-temperature molecular dynamics simulation of aragonite. J. Phys.: Condens. Matter 2010, 22, 225402, 10.1088/0953-8984/22/22/225402 41. Liu, J.; Ossowski, M.; Hardy, J.; Duan, C.-g.; Mei, W. Simulation of structural transformation in aragonite CaCO3. AIP Conference Proceedings 2000, 535, 338-343, 10.1063/1.1324472 42. Belokoneva, E.; Kabalov, Y. K.; Al-Ama, A.; Dimitrova, O.; Kurazhkovskaya, V.; Stefanovich, S. Y. New oxygen-and lead-deficient lead borate Pb 0.9(I)Pb0.6(III)[BO2.25]2= 2Pb0.75[BO2.25] and its relation to aragonite and calcite structures. Crystallogr. Rep. 2002, 47, 17-23, 10.1134/1.1446903 43. Ramsdell, L.; Kohn, J. Developments in silicon carbide research. Acta Crystallogr. 1952, 5, 215-224, 10.1107/S0365110X52000617 44. Dasgupta, D. The oriented transformation of aragonite into calcite. Mineral. Mag. J. Mineral. Soc. 1964, 33, 924-928, 10.1180/minmag.1964.033.265.09 45. McTigue, J. W.; Wenk, H.-R. Microstructures and orientation relationships in the dry-state aragonite-calcite and calcite-lime phase transformations. Am. Mineral. 1985, 70, 1253-1261 46. Gillet, P.; Gérard, Y.; Willaime, C. The calcite-aragonite transition: mechanism and microstructures induced by the transformation stresses and strain. Bull. Mineral. 1987, 110, 481-496, 10.3406/bulmi.1987.7992 47. Merlini, M.; Crichton, W.; Chantel, J.; Guignard, J.; Poli, S. Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3at high pressure. Mineral. Mag. 2014, 78, 225-233, 10.1180/minmag.2014.078.2.01 48. Yuan, X.; Gao, C.; Gao, J. An in situ study of the phase transitions among CaCO3high-pressure polymorphs. Mineral. Mag. 2019, 83, 191-197, 10.1180/mgm.2018.140 49. Schaebitz, M.; Wirth, R.; Janssen, C.; Dresen, G. First evidence of CaCO3-III and CaCO3-IIIb high-pressure polymorphs of calcite: Authigenically formed in near surface sediments. Am. Mineral. 2015, 100, 1230-1235, 10.2138/am-2015-5099 50. Toledano, P.; Knorr, K.; Ehm, L.; Depmeier, W. Phenomenological theory of the reconstructive phase transition between the NaCl and CsCl structure types. Phys. Rev. B. 2003, 67, 144106, 10.1103/PhysRevB.67.144106 51. Zahn, D.; Leoni, S. Nucleation and growth in pressure-induced phase transitions from molecular dynamics simulations: Mechanism of the reconstructive transformation of NaCl to the CsCl-type structure. Phys. Rev. Lett. 2004, 92, 250201, 10.1103/PhysRevLett.92.250201