Цитирование: | 1. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704, 10.1063/1.2210932
2. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B. 2015, 91, 104101, 10.1103/PhysRevB.91.104101
3. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-III and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977
4. Merlini, M.; Hanfland, M.; Crichton, W. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the earth's mantle. Earth Planet. Sci. Lett. 2012, 333, 265-271, 10.1016/j.epsl.2012.04.036
5. Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W.; Hanfland, M. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys. Chem. Miner. 2015, 42, 29-43, 10.1007/s00269-014-0696-7
6. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. PVT equation of state of CaCO3aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91, 10.1016/j.pepi.2017.02.006
7. Koch-Müller, M.; Jahn, S.; Birkholz, N.; Ritter, E.; Schade, U. Phase transitions in the system CaCO3at high p and t determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys. Chem. Miner. 2016, 43, 545-561, 10.1007/s00269-016-0815-8
8. Ono, S.; Kikegawa, T.; Ohishi, Y.; Tsuchiya, J. Post-aragonite phase transformation in CaCO3at 40 GPa. Am. Mineral. 2005, 90, 667-671, 10.2138/am.2005.1610
9. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R. et al. Raman spectroscopy and x-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B. Phys. 2017, 96, 104101, 10.1103/PhysRevB.96.104101
10. Litasov, K.; Shatskiy, A.; Podborodnikov, I.; Arefiev, A. Phase diagrams of carbonate materials at high pressures, with implications for melting and carbon cycling in the deep earth. In American Geophysical Union Geophysical Monograph, Carbon in Earth's Interior; John Wiley & Sons, 2020; Chapter 14, pp 137-165 10.1002/9781119508229.ch14.
11. Davis, B. L.; Adams, L. H. Kinetics of the calcite ↔ aragonite transformation. Journal of Geophysical Research 1965, 70, 433-441, 10.1029/JZ070i002p00433
12. Chen, S.-F.; Yu, S.-H.; Jiang, J.; Li, F.; Liu, Y. Polymorph discrimination of CaCO3mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. Chem. Mater. 2006, 18, 115-122, 10.1021/cm0519028
13. Bragg, W. The structure of aragonite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1924, 105, 16-39, 10.1098/rspa.1924.0002
14. Antao, S. M.; Hassan, I. Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffraction data. Can. Mineral. 2010, 48, 1225-1236, 10.3749/canmin.48.5.1225
15. Iguchi, Y.; Senna, M. Mechanochemical polymorphic transformation and its stationary state between aragonite and calcite i. effects of preliminary annealing. Powder Technol. 1985, 43, 155-162, 10.1016/0032-5910(85)87007-8
16. Isobe, T.; Senna, M. Differences in thermal and mechanochemical polymorphism. effects of impurity on the system aragonite-calcite. J. Chem. Soc., Faraday Trans. 1 1988, 84, 1199-1209, 10.1039/f19888401199
17. Johannes, W.; Puhan, D. The calcite-aragonite transition, reinvestigated. Contrib. Mineral. Petrol. 1971, 31, 28-38, 10.1007/BF00373389
18. Blatov, V. A. Crystal structures of inorganic oxoacid salts perceived as cation array: a periodic-graph approach. In Inorganic 3D Structures; Springer: 2011; pp 31-66.
19. Santillán, J.; Williams, Q. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am. Mineral. 2004, 89, 1348-1352, 10.2138/am-2004-8-925
20. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169, 10.1103/PhysRevB.54.11169
21. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
22. Dickens, B.; Bowen, J. Refinement of the crystal structure of the aragonite phase of CaCO3. J. Res. Natl. Bur. Stand., Sect. A 1971, 75A, 27-32, 10.6028/jres.075A.004
23. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244, 10.1103/PhysRevB.45.13244
24. Gavryushkin, P. N.; Rečnik, A.; Daneu, N.; Sagatov, N.; Belonoshko, A. B.; Popov, Z. I.; Ribić, V.; Litasov, K. D. Temperature induced twinning in aragonite: transmission electron microscopy experiments and ab initio calculations. Z. Kristallogr.-Cryst. Mater. 2019, 234, 79-84, 10.1515/zkri-2018-2109
25. Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem. 2010, 71, 271-298, 10.2138/rmg.2010.71.13
26. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237, 10.1021/ar1001318
27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/PhysRevLett.77.3865
28. Graf, D. L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 1961, 46, 1283-1316
29. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
30. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188, 10.1103/PhysRevB.13.5188
31. Merrill, L.; Bassett, W. A. The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, 31, 343-349, 10.1107/S0567740875002774
32. Muller, G.; Gatsner, M. Neues jahrbuch für mineralogie monatshefte. Chemical analysis 1971, 10, 466-469
33. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576-3586, 10.1021/cg500498k
34. Stokes, H. T.; Hatch, D. M. Findsym: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237-238, 10.1107/S0021889804031528
35. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
36. O'Keeffe, M.; Peskov, M.; Ramsden, S.; Yaghi, O. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782, 10.1021/ar800124u
37. Bruker, A. Topas v4. 2: General profile and structure analysis software for powder diffraction data; Bruker AXS: Karlsruhe, Germany, 2009.
38. Antao, S. M.; Hassan, I. The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can. Mineral. 2009, 47, 1245-1255, 10.3749/canmin.47.5.1245
39. Langreiter, T.; Kahlenberg, V. TEV-a program for the determination and visualization of the thermal expansion tensor from diffraction data. Institute of Mineralogy and Petrography. University of Innsbruck, Austria, 2014.
40. Miyake, A.; Kawano, J. High-temperature molecular dynamics simulation of aragonite. J. Phys.: Condens. Matter 2010, 22, 225402, 10.1088/0953-8984/22/22/225402
41. Liu, J.; Ossowski, M.; Hardy, J.; Duan, C.-g.; Mei, W. Simulation of structural transformation in aragonite CaCO3. AIP Conference Proceedings 2000, 535, 338-343, 10.1063/1.1324472
42. Belokoneva, E.; Kabalov, Y. K.; Al-Ama, A.; Dimitrova, O.; Kurazhkovskaya, V.; Stefanovich, S. Y. New oxygen-and lead-deficient lead borate Pb 0.9(I)Pb0.6(III)[BO2.25]2= 2Pb0.75[BO2.25] and its relation to aragonite and calcite structures. Crystallogr. Rep. 2002, 47, 17-23, 10.1134/1.1446903
43. Ramsdell, L.; Kohn, J. Developments in silicon carbide research. Acta Crystallogr. 1952, 5, 215-224, 10.1107/S0365110X52000617
44. Dasgupta, D. The oriented transformation of aragonite into calcite. Mineral. Mag. J. Mineral. Soc. 1964, 33, 924-928, 10.1180/minmag.1964.033.265.09
45. McTigue, J. W.; Wenk, H.-R. Microstructures and orientation relationships in the dry-state aragonite-calcite and calcite-lime phase transformations. Am. Mineral. 1985, 70, 1253-1261
46. Gillet, P.; Gérard, Y.; Willaime, C. The calcite-aragonite transition: mechanism and microstructures induced by the transformation stresses and strain. Bull. Mineral. 1987, 110, 481-496, 10.3406/bulmi.1987.7992
47. Merlini, M.; Crichton, W.; Chantel, J.; Guignard, J.; Poli, S. Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3at high pressure. Mineral. Mag. 2014, 78, 225-233, 10.1180/minmag.2014.078.2.01
48. Yuan, X.; Gao, C.; Gao, J. An in situ study of the phase transitions among CaCO3high-pressure polymorphs. Mineral. Mag. 2019, 83, 191-197, 10.1180/mgm.2018.140
49. Schaebitz, M.; Wirth, R.; Janssen, C.; Dresen, G. First evidence of CaCO3-III and CaCO3-IIIb high-pressure polymorphs of calcite: Authigenically formed in near surface sediments. Am. Mineral. 2015, 100, 1230-1235, 10.2138/am-2015-5099
50. Toledano, P.; Knorr, K.; Ehm, L.; Depmeier, W. Phenomenological theory of the reconstructive phase transition between the NaCl and CsCl structure types. Phys. Rev. B. 2003, 67, 144106, 10.1103/PhysRevB.67.144106
51. Zahn, D.; Leoni, S. Nucleation and growth in pressure-induced phase transitions from molecular dynamics simulations: Mechanism of the reconstructive transformation of NaCl to the CsCl-type structure. Phys. Rev. Lett. 2004, 92, 250201, 10.1103/PhysRevLett.92.250201
|