Цитирование: | 1. Gavryushkin, P. N.; Behtenova, A.; Popov, Z. I.; Bakakin, V. V.; Likhacheva, A. Y.; Litasov, K. D.; Gavryushkin, A. Toward analysis of structural changes common for alkaline carbonates and binary compounds: prediction of high-pressure structures of Li2CO3, Na2CO3, and K2CO3. Cryst. Growth Des. 2016, 16, 5612-5617, 10.1021/acs.cgd.5b01793
2. Gavryushkin, P. N.; Bekhtenova, A.; Lobanov, S. S.; Shatskiy, A.; Likhacheva, A. Y.; Sagatova, D.; Sagatov, N.; Rashchenko, S. V.; Litasov, K. D.; Sharygin, I. S. et al. High-pressure phase diagrams of Na2CO3and K2CO3. Minerals 2019, 9, 599, 10.3390/min9100599
3. Grzechnik, A.; Bouvier, P.; Farina, L. High-pressure structure of Li2CO3. J. Solid State Chem. 2003, 173, 13-19, 10.1016/s0022-4596(03)00053-7
4. Oganov, A. R.; Glass, C. W.; Ono, S. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett. 2006, 241, 95-103, 10.1016/j.epsl.2005.10.014
5. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 104101, 10.1103/physrevb.91.104101
6. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977
7. Smith, D.; Lawler, K. V.; Martinez-Canales, M.; Daykin, A. W.; Fussell, Z.; Smith, G. A.; Childs, C.; Smith, J. S.; Pickard, C. J.; Salamat, A. Postaragonite phases of CaCO3at lower mantle pressures. Phys. Rev. Mater. 2018, 2, 013605, 10.1103/physrevmaterials.2.013605
8. Solomatova, N. V.; Asimow, P. D. First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent hubbard u. Phys. Chem. Miner. 2017, 45, 293
9. Binck, J.; Chariton, S.; Stekiel, M.; Bayarjargal, L.; Morgenroth, W.; Milman, V.; Dubrovinsky, L.; Winkler, B. High-pressure, high-temperature phase stability of iron-poor dolomite and the structures of dolomite-IIIc and dolomite-V. Phys. Earth Planet. In. 2020, 299, 106403, 10.1016/j.pepi.2019.106403
10. Merlini, M.; Cerantola, V.; Gatta, G. D.; Gemmi, M.; Hanfland, M.; Kupenko, I.; Lotti, P.; Müller, H.; Zhang, L. Dolomite-IV: Candidate structure for a carbonate in the earth's lower mantle. Am. Mineral. 2017, 102, 1763-1766, 10.2138/am-2017-6161
11. Fyfe, W. S. Lattice energies, phase transformations and volatiles in the mantle. Phys. Earth Planet. In. 1970, 3, 196-200, 10.1016/0031-9201(70)90055-5
12. Irving, A. J.; Wyllie, P. J. Melting relationships in CaO-CO2and Mgo-CO2to 36 kilobars with comments on CO2in the mantle. Earth Planet. Sci. Lett. 1973, 20, 220-225, 10.1016/0012-821x(73)90161-1
13. Katsura, T.; Tsuchida, Y.; Ito, E.; Yagi, T.; Utsumi, W.; Akimoto, S.-i. Stability of magnesite under the lower mantle conditions. Proc. Jpn. Acad., Ser. B 1991, 67, 57-60, 10.2183/pjab.67.57
14. Yao, X.; Xie, C.; Dong, X.; Oganov, A. R.; Zeng, Q. Novel high-pressure calcium carbonates. Phys. Rev. B 2018, 98, 014108, 10.1103/physrevb.98.014108
15. Sagatova, D.; Shatskiy, A.; Sagatov, N.; Gavryushkin, P. N.; Litasov, K. D. Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos 2020, 370-371, 105637, 10.1016/j.lithos.2020.105637
16. Gavryushkin, P. N.; Sagatova, D.; Sagatov, N.; Banaev, M. V. Silicate-like crystallchemistry for carbonates at high pressure. Reality or not? IV Conference and School for Young Scientists Non-Ambient Diffraction and Nanomaterials, (Book of abstracts: Saint-Petersburg, Oct 19-21, 2020), 2020; p 38.
17. Laniel, D.; Binck, J.; Winkler, B.; Vogel, S.; Fedotenko, T.; Chariton, S.; Prakapenka, V.; Milman, V.; Schnick, W.; Dubrovinsky, L.; Dubrovinskaia, N. Synthesis, crystal structure and structure-property relations of strontium orthocarbonate, Sr2CO4. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2021, 77, 131-137, 10.1107/s2052520620016650
18. Binck, J.; Laniel, D.; Khandarkhaeva, S.; Fedotenko, T.; Aslandukov, A.; Glazyrin, K.; Milman, V.; Chariton, S.; Prakapenka, V. B.; Dubrovinskaia, N.; Dubrovinsky, L.; Winkler, B. Synthesis of calcium orthocarbonate, Ca2CO4-Pnma, at P,T-conditions of Earth's transition zone and lower mantle. Am. Mineral. 2021, 10.2138/am-2021-7872
19. Oganov, A. R.; Pickard, C. J.; Zhu, Q.; Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 2019, 4, 331-348, 10.1038/s41578-019-0101-8
20. Kanzaki, M. High-pressure phase relations in Zn2SiO4 system: A first-principles study. 2019, arXiv:1903.05339, arXiv preprint.
21. Tomioka, N.; Bindi, L.; Okuchi, T.; Miyahara, M.; Iitaka, T.; Li, Z.; Kawatsu, T.; Xie, X.; Purevjav, N.; Tani, R. et al. Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Commun. Earth Environ. 2021, 2, 1-8, 10.1038/s43247-020-00090-7
22. Horiuchi, H.; Sawamoto, H. β-Mg2SiO4: Single-crystal X-ray diffraction study. Am. Mineral. 1981, 66, 568-575
23. Smyth, J. R.; Hazen, R. M. The crystal structures of forsterite and hortonolite at several temperatures up to 900 C. Am. Mineral. 1973, 58, 588-593
24. Hawthorne, F. C.; Ferguson, R. B. Anhydrous sulphates; I, Refinement of the crystal structure of celestite with an appendix on the structure of thenardite. Can. Mineral. 1975, 13, 181-187
25. Alcock, N. W.; Evans, D. A.; Jenkins, H. D. B. Lithium sulphate-a redetermination. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1973, 29, 360-361, 10.1107/s0567740873002499
26. Oganov, A. R.; Glass, C. W. Crystal structure prediction usingab initioevolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704, 10.1063/1.2210932
27. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237,. PMID: 21361336 10.1021/ar1001318
28. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172-1182, 10.1016/j.cpc.2012.12.009
29. Bushlanov, P. V.; Blatov, V. A.; Oganov, A. R. Topology-based crystal structure generator. Comput. Phys. Commun. 2019, 236, 1-7, 10.1016/j.cpc.2018.09.016
30. Pickard, C. J.; Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504, 10.1103/physrevlett.97.045504
31. Pickard, C. J.; Needs, R. J. Ab initiorandom structure searching. J. Phys.: Condens. Matter 2011, 23, 053201, 10.1088/0953-8984/23/5/053201
32. Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186, 10.1103/physrevb.54.11169
33. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
34. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
35. Gavryushkin, P. N.; Sagatov, N.; Belonoshko, A. B.; Banaev, M. V.; Litasov, K. D. Disordered aragonite: The new high-pressure, high-temperature phase of CaCO3. J. Phys. Chem. C 2020, 124, 26467-26473, 10.1021/acs.jpcc.0c08309
36. Belonoshko, A. B.; Skorodumova, N. V.; Rosengren, A.; Johansson, B. Melting and critical superheating. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 012201, 10.1103/physrevb.73.012201
37. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 1952, 65, 349-354, 10.1088/0370-1298/65/5/307
38. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solid. 1963, 11, 357-372, 10.1016/0022-5096(63)90036-x
39. Fonari, A.; Stauffer, S. vasp_raman.py, 2013. https://github.com/raman-sc/VASP/.
40. Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204, 10.1088/0953-8984/21/8/084204
41. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360, 10.1016/j.commatsci.2005.04.010
42. Stokes, H. T.; Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237-238, 10.1107/s0021889804031528
43. Momma, K.; Izumi, F. VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/s0021889811038970
44. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586, 10.1021/cg500498k
45. Ganose, A. M.; Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 2019, 9, 874-881, 10.1557/mrc.2019.94
46. Dorogokupets, P. I.; Dymshits, A. M.; Sokolova, T. S.; Danilov, B. S.; Litasov, K. D. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4system at pressures of up to 130 GPa. Russ. Geol. Geophys. 2015, 56, 172-189, 10.1016/j.rgg.2015.01.011
47. Belmonte, D.; Ottonello, G.; Zuccolini, M. V. Ab initio-assisted assessment of the CaO-SiO2system under pressure. Calphad 2017, 59, 12-30, 10.1016/j.calphad.2017.07.009
48. Solopova, N. A.; Dubrovinsky, L.; Spivak, A. V.; Litvin, Y. A.; Dubrovinskaia, N. Melting and decomposition of MgCO3at pressures up to 84 GPa. Phys. Chem. Miner. 2015, 42, 73-81, 10.1007/s00269-014-0701-1
49. Katsura, T.; Yoneda, A.; Yamazaki, D.; Yoshino, T.; Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. In. 2010, 183, 212-218,. Special Issue on Deep Slab and Mantle Dynamics 10.1016/j.pepi.2010.07.001
50. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R. et al. Raman spectroscopy and X-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B 2017, 96, 104101, 10.1103/physrevb.96.104101
51. Binck, J.; Bayarjargal, L.; Lobanov, S. S.; Morgenroth, W.; Luchitskaia, R.; Pickard, C. J.; Milman, V.; Refson, K.; Jochym, D. B.; Byrne, P. et al. Phase stabilities of MgCO3and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater. 2020, 4, 055001, 10.1103/physrevmaterials.4.055001
52. Litasov, K. D.; Shatskiy, A. Carbon-bearing magmas in the Earth's deep interior. In Magmas under pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts; Kono, Y., Sanloup, C., Eds.; Elsevier, 2018; pp 43-82.
53. Li, Z.; Stackhouse, S. Iron-rich carbonates stabilized by magnetic entropy at lower mantle conditions. Earth Planet. Sci. Lett. 2020, 531, 115959, 10.1016/j.epsl.2019.115959
|