Инд. авторы: Gavryushkin P.N., Sagatova D.N., Sagatov N., Litasov K.D.
Заглавие: Formation of mg-orthocarbonate through the reaction mgco3+ mgo = mg2co4at earth's lower mantle p- t conditions
Библ. ссылка: Gavryushkin P.N., Sagatova D.N., Sagatov N., Litasov K.D. Formation of mg-orthocarbonate through the reaction mgco3+ mgo = mg2co4at earth's lower mantle p- t conditions // Crystal Growth & Design. - 2021. - ISSN 1528-7483. - EISSN 1528-7505.
Внешние системы: DOI: 10.1021/acs.cgd.1c00140; РИНЦ: 46078666;
Реферат: eng: Orthocarbonates of alkaline earth metals are the newly discovered class of compounds stabilized at high pressures. Mg-orthocarbonates are the potential carbon host phases, transferring oxidized carbon in the Earth's lower mantle up to the core-mantle boundary. Here, we demonstrate the possibility for the formation of Mg2CO4 in the lower mantle at pressures above 50 GPa by ab initio calculations. Mg2CO4 is formed by the reaction MgCO3 + MgO = Mg2CO4, proceeding only at high temperatures. At 50 GPa, the reaction starts at 2200 K. The temperature decreases with pressure and drops down to 1085 K at the pressure of the Earth's core-mantle boundary, approximately 140 GPa. Two stable structures, Mg2CO4-Pnma and Mg2CO4-P21/c, were revealed using a crystal structure prediction technique. Mg2CO4-Pnma is isostructural to mineral forsterite (Mg2SiO4), while Mg2CO4-P21/c is isostructural to mineral larnite (β-Ca2SiO4). Transition pressure from Mg2CO4-Pnma to Mg2CO4-P21/c is around 80 GPa. Both phases are dynamically stable on decompression down to the ambient pressure and can be preserved in the samples of natural high-pressure rocks or the products of experiments. Mg2CO4-Pnma has a melting temperature more than 16% higher than the melting temperature of magnesite (MgCO3). At 23.7, 35.5, and 52.2 GPa, Mg2CO4-Pnma melts at 2661, 2819, and 3109 K, respectively. Acoustic wave velocities Vp and Vs of Mg2CO4-Pnma are very similar to that of magnesite, while universal anisotropy of Mg2CO4-Pnma is stronger than that of magnesite, as well as the coefficient AU is larger for orthocarbonate. The obtained Raman spectra of Mg2CO4-Pnma would help its identification in high-pressure experiments.
Издано: 2021
Цитирование: 1. Gavryushkin, P. N.; Behtenova, A.; Popov, Z. I.; Bakakin, V. V.; Likhacheva, A. Y.; Litasov, K. D.; Gavryushkin, A. Toward analysis of structural changes common for alkaline carbonates and binary compounds: prediction of high-pressure structures of Li2CO3, Na2CO3, and K2CO3. Cryst. Growth Des. 2016, 16, 5612-5617, 10.1021/acs.cgd.5b01793 2. Gavryushkin, P. N.; Bekhtenova, A.; Lobanov, S. S.; Shatskiy, A.; Likhacheva, A. Y.; Sagatova, D.; Sagatov, N.; Rashchenko, S. V.; Litasov, K. D.; Sharygin, I. S. et al. High-pressure phase diagrams of Na2CO3and K2CO3. Minerals 2019, 9, 599, 10.3390/min9100599 3. Grzechnik, A.; Bouvier, P.; Farina, L. High-pressure structure of Li2CO3. J. Solid State Chem. 2003, 173, 13-19, 10.1016/s0022-4596(03)00053-7 4. Oganov, A. R.; Glass, C. W.; Ono, S. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett. 2006, 241, 95-103, 10.1016/j.epsl.2005.10.014 5. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 104101, 10.1103/physrevb.91.104101 6. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977 7. Smith, D.; Lawler, K. V.; Martinez-Canales, M.; Daykin, A. W.; Fussell, Z.; Smith, G. A.; Childs, C.; Smith, J. S.; Pickard, C. J.; Salamat, A. Postaragonite phases of CaCO3at lower mantle pressures. Phys. Rev. Mater. 2018, 2, 013605, 10.1103/physrevmaterials.2.013605 8. Solomatova, N. V.; Asimow, P. D. First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent hubbard u. Phys. Chem. Miner. 2017, 45, 293 9. Binck, J.; Chariton, S.; Stekiel, M.; Bayarjargal, L.; Morgenroth, W.; Milman, V.; Dubrovinsky, L.; Winkler, B. High-pressure, high-temperature phase stability of iron-poor dolomite and the structures of dolomite-IIIc and dolomite-V. Phys. Earth Planet. In. 2020, 299, 106403, 10.1016/j.pepi.2019.106403 10. Merlini, M.; Cerantola, V.; Gatta, G. D.; Gemmi, M.; Hanfland, M.; Kupenko, I.; Lotti, P.; Müller, H.; Zhang, L. Dolomite-IV: Candidate structure for a carbonate in the earth's lower mantle. Am. Mineral. 2017, 102, 1763-1766, 10.2138/am-2017-6161 11. Fyfe, W. S. Lattice energies, phase transformations and volatiles in the mantle. Phys. Earth Planet. In. 1970, 3, 196-200, 10.1016/0031-9201(70)90055-5 12. Irving, A. J.; Wyllie, P. J. Melting relationships in CaO-CO2and Mgo-CO2to 36 kilobars with comments on CO2in the mantle. Earth Planet. Sci. Lett. 1973, 20, 220-225, 10.1016/0012-821x(73)90161-1 13. Katsura, T.; Tsuchida, Y.; Ito, E.; Yagi, T.; Utsumi, W.; Akimoto, S.-i. Stability of magnesite under the lower mantle conditions. Proc. Jpn. Acad., Ser. B 1991, 67, 57-60, 10.2183/pjab.67.57 14. Yao, X.; Xie, C.; Dong, X.; Oganov, A. R.; Zeng, Q. Novel high-pressure calcium carbonates. Phys. Rev. B 2018, 98, 014108, 10.1103/physrevb.98.014108 15. Sagatova, D.; Shatskiy, A.; Sagatov, N.; Gavryushkin, P. N.; Litasov, K. D. Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos 2020, 370-371, 105637, 10.1016/j.lithos.2020.105637 16. Gavryushkin, P. N.; Sagatova, D.; Sagatov, N.; Banaev, M. V. Silicate-like crystallchemistry for carbonates at high pressure. Reality or not? IV Conference and School for Young Scientists Non-Ambient Diffraction and Nanomaterials, (Book of abstracts: Saint-Petersburg, Oct 19-21, 2020), 2020; p 38. 17. Laniel, D.; Binck, J.; Winkler, B.; Vogel, S.; Fedotenko, T.; Chariton, S.; Prakapenka, V.; Milman, V.; Schnick, W.; Dubrovinsky, L.; Dubrovinskaia, N. Synthesis, crystal structure and structure-property relations of strontium orthocarbonate, Sr2CO4. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2021, 77, 131-137, 10.1107/s2052520620016650 18. Binck, J.; Laniel, D.; Khandarkhaeva, S.; Fedotenko, T.; Aslandukov, A.; Glazyrin, K.; Milman, V.; Chariton, S.; Prakapenka, V. B.; Dubrovinskaia, N.; Dubrovinsky, L.; Winkler, B. Synthesis of calcium orthocarbonate, Ca2CO4-Pnma, at P,T-conditions of Earth's transition zone and lower mantle. Am. Mineral. 2021, 10.2138/am-2021-7872 19. Oganov, A. R.; Pickard, C. J.; Zhu, Q.; Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 2019, 4, 331-348, 10.1038/s41578-019-0101-8 20. Kanzaki, M. High-pressure phase relations in Zn2SiO4 system: A first-principles study. 2019, arXiv:1903.05339, arXiv preprint. 21. Tomioka, N.; Bindi, L.; Okuchi, T.; Miyahara, M.; Iitaka, T.; Li, Z.; Kawatsu, T.; Xie, X.; Purevjav, N.; Tani, R. et al. Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Commun. Earth Environ. 2021, 2, 1-8, 10.1038/s43247-020-00090-7 22. Horiuchi, H.; Sawamoto, H. β-Mg2SiO4: Single-crystal X-ray diffraction study. Am. Mineral. 1981, 66, 568-575 23. Smyth, J. R.; Hazen, R. M. The crystal structures of forsterite and hortonolite at several temperatures up to 900 C. Am. Mineral. 1973, 58, 588-593 24. Hawthorne, F. C.; Ferguson, R. B. Anhydrous sulphates; I, Refinement of the crystal structure of celestite with an appendix on the structure of thenardite. Can. Mineral. 1975, 13, 181-187 25. Alcock, N. W.; Evans, D. A.; Jenkins, H. D. B. Lithium sulphate-a redetermination. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1973, 29, 360-361, 10.1107/s0567740873002499 26. Oganov, A. R.; Glass, C. W. Crystal structure prediction usingab initioevolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704, 10.1063/1.2210932 27. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237,. PMID: 21361336 10.1021/ar1001318 28. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172-1182, 10.1016/j.cpc.2012.12.009 29. Bushlanov, P. V.; Blatov, V. A.; Oganov, A. R. Topology-based crystal structure generator. Comput. Phys. Commun. 2019, 236, 1-7, 10.1016/j.cpc.2018.09.016 30. Pickard, C. J.; Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504, 10.1103/physrevlett.97.045504 31. Pickard, C. J.; Needs, R. J. Ab initiorandom structure searching. J. Phys.: Condens. Matter 2011, 23, 053201, 10.1088/0953-8984/23/5/053201 32. Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186, 10.1103/physrevb.54.11169 33. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0 34. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021 35. Gavryushkin, P. N.; Sagatov, N.; Belonoshko, A. B.; Banaev, M. V.; Litasov, K. D. Disordered aragonite: The new high-pressure, high-temperature phase of CaCO3. J. Phys. Chem. C 2020, 124, 26467-26473, 10.1021/acs.jpcc.0c08309 36. Belonoshko, A. B.; Skorodumova, N. V.; Rosengren, A.; Johansson, B. Melting and critical superheating. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 012201, 10.1103/physrevb.73.012201 37. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 1952, 65, 349-354, 10.1088/0370-1298/65/5/307 38. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solid. 1963, 11, 357-372, 10.1016/0022-5096(63)90036-x 39. Fonari, A.; Stauffer, S. vasp_raman.py, 2013. https://github.com/raman-sc/VASP/. 40. Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204, 10.1088/0953-8984/21/8/084204 41. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360, 10.1016/j.commatsci.2005.04.010 42. Stokes, H. T.; Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237-238, 10.1107/s0021889804031528 43. Momma, K.; Izumi, F. VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/s0021889811038970 44. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586, 10.1021/cg500498k 45. Ganose, A. M.; Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 2019, 9, 874-881, 10.1557/mrc.2019.94 46. Dorogokupets, P. I.; Dymshits, A. M.; Sokolova, T. S.; Danilov, B. S.; Litasov, K. D. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4system at pressures of up to 130 GPa. Russ. Geol. Geophys. 2015, 56, 172-189, 10.1016/j.rgg.2015.01.011 47. Belmonte, D.; Ottonello, G.; Zuccolini, M. V. Ab initio-assisted assessment of the CaO-SiO2system under pressure. Calphad 2017, 59, 12-30, 10.1016/j.calphad.2017.07.009 48. Solopova, N. A.; Dubrovinsky, L.; Spivak, A. V.; Litvin, Y. A.; Dubrovinskaia, N. Melting and decomposition of MgCO3at pressures up to 84 GPa. Phys. Chem. Miner. 2015, 42, 73-81, 10.1007/s00269-014-0701-1 49. Katsura, T.; Yoneda, A.; Yamazaki, D.; Yoshino, T.; Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. In. 2010, 183, 212-218,. Special Issue on Deep Slab and Mantle Dynamics 10.1016/j.pepi.2010.07.001 50. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R. et al. Raman spectroscopy and X-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B 2017, 96, 104101, 10.1103/physrevb.96.104101 51. Binck, J.; Bayarjargal, L.; Lobanov, S. S.; Morgenroth, W.; Luchitskaia, R.; Pickard, C. J.; Milman, V.; Refson, K.; Jochym, D. B.; Byrne, P. et al. Phase stabilities of MgCO3and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater. 2020, 4, 055001, 10.1103/physrevmaterials.4.055001 52. Litasov, K. D.; Shatskiy, A. Carbon-bearing magmas in the Earth's deep interior. In Magmas under pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts; Kono, Y., Sanloup, C., Eds.; Elsevier, 2018; pp 43-82. 53. Li, Z.; Stackhouse, S. Iron-rich carbonates stabilized by magnetic entropy at lower mantle conditions. Earth Planet. Sci. Lett. 2020, 531, 115959, 10.1016/j.epsl.2019.115959