Цитирование: | 1. Koizumi, S., Watanabe, K., Hasegawa, M., Kanda, H., Formation of diamond p-n junction and its optical emission characteristics. Diam. Relat. Mater. 11 (2002), 307–311, 10.1016/S0925-9635(01)00537-4.
2. Takeuchi, D., Makino, T., Kato, H., et al. Free exciton luminescence from a diamond p-i-n diode grown on a substrate produced by heteroepitaxy. Phys. Status Solidi 211:10 (2014), 2251–2256, 10.1002/pssa.201431167.
3. Hathwar, R., Dutta, M., Koeck, F.A.M., et al. Temperature dependent simulation of diamond depleted Schottky PIN diodes. J. Appl. Phys., 119, 2016, 225703, 10.1063/1.4953385.
4. Traoré, A., Nakajima, A., Makino, T., et al. Reverse-recovery of diamond p-i-n diodes. IET Power Electron. 11:4 (2018), 695–699, 10.1049/iet-pel.2017.0404.
5. Ozawa, N., Makino, T., Kato, H., et al. Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diam. Relat. Mater. 85 (2018), 49–52, 10.1016/j.diamond.2018.03.030.
6. Umezawa, H., Recent advances in diamond power semiconductor devices. Mater. Sci. Semicond. Process. 78 (2018), 147–156, 10.1016/j.mssp.2018.01.007.
7. Rouvalis, E., Baynes, F.N., Xie, X., et al. High-power and high-linearity photodetector modules for microwave photonic applications. J. Lightwave Technol. 32:20 (2014), 3810–3816, 10.1109/JLT.2014.2310252.
8. Bormashov, V.S., Troschiev, S.Y., Tarelkin, S.A., et al. High power density nuclear battery prototype based on diamond Schottky diodes. Diam. Relat. Mater. 84 (2018), 41–47, 10.1016/j.diamond.2018.03.006.
9. Rath, P., Ummethala, S., Nebel, C., Pernice, W.H.P., Diamond as a material for monolithically integrated optical and optomechanical devices. Phys. Status Solidi 212:11 (2015), 2385–2399, 10.1002/pssa.201532494.
10. Gao, F., Huang, Z., Feigel, B., Van Erps, J., Thienpont, H., Beausoleil, R.G., Vermeulen, N., Low-loss millimeter-length waveguides and grating couplers in single-crystal diamond. J. Lightwave Technol. 34:23 (2016), 5576–5582, 10.1109/JLT.2016.2622620.
11. Feigel, B., Castello-Lurbe, D., Thienpont, H., Vermeulen, N., Opportunities for visible supercontinuum light generation in integrated diamond waveguides. Opt. Lett. 42:19 (2017), 3804–3807, 10.1364/OL.42.003804.
12. Yavuz, N., Bayer, M.M., Cirkinoglu, H.O., Serpenguzel, A., Le Phu, T., Giakoumaki, A., Bharadwaj, V., Ramponi, R., Eaton, S.M., Laser-inscribed diamond waveguide resonantly coupled to diamond microsphere. Molecules 25:11 (2020), 1–9, 10.3390/molecules25112698 2698.
13. Lobaev, M.A., Radishev, D.B., Bogdanov, S.A., Vikharev, A.L., Gorbachev, A.M., Isaev, V.A., Kraev, S.A., Okhapkin, A.I., Arhipova, E.A., Drozdov, M.N., Shashkin, V.I., Diamond p-i-n diode with nitrogen containing intrinsic region for the study of nitrogen-vacancy center electroluminescence. Phys. Status Solidi 14:11 (2020), 1–5, 10.1002/pssr.202000347 2000347.
14. Jeske, J., Lau, D.W., Vidal, X., McGuinness, L.P., Reineck, P., Johnson, B.C., Doherty, M.W., McCallum, J.C., Onoda, S., Jelezko, F., Ohshima, T., Stimulated emission from nitrogen-vacancy centres in diamond. Nat. Commun. 8:1 (2017), 1–8, 10.1038/ncomms14000.
15. Nair, S.R., Rogers, L.J., Vidal, X., Roberts, R.P., Abe, H., Ohshima, T., Yatsui, T., Greentree, A.D., Jeske, J., Volz, T., Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity. Nanophotonics 9:15 (2020), 4505–4518, 10.1515/nanoph-2020-0305.
16. Walker, J., Optical absorption and luminescence in diamond. Rep. Prog. Phys. 42 (1979), 1607–1659, 10.1088/0034-4885/42/10/001.
17. Dobrinets, I.A., Vins, V.G., Zaitsev, A.M., HPHT-treated diamonds. Springer Mater. Sci. 181 (2013), 1–270, 10.1007/978-3-642-37490-6.
18. Zaitsev, A.M., Optical Properties of Diamond: A Data Handbook. vol. 502, 2001, Springer-Verlag, Berlin, 10.1007/978-3-662-04548-0.
19. Mildren, R.P., Rabeau, J.R., Intrinsic Optical Properties of Diamond/in Optical Engineering of Diamond. 2013, 10.1002/9783527648603.ch1.
20. Breuer, S.J., Briddon, P.R., Ab initio investigation of the native defects in diamond and self-diffusion. Phys. Rev. B, 51, 1995, 6984, 10.1103/PhysRevB.51.6984.
21. Steeds, J.W., Davis, T.J., Charles, S.J., Hayes, J.M., Butler, J.E., 3H luminescence in electron-irradiated diamond samples and its relationship to self-interstitials. Diam. Relat. Mater. 8 (1999), 1847–1852, 10.1016/S0925-9635(99)00144-2.
22. Sorokin, D.A., Burachenko, A.G., Beloplotov, D.V., Tarasenko, V.F., Baksht, E.Kh, Lipatov, E.I., Lomaev, M.I., Luminescence of crystals excited by a runaway electron beam and by excilamp radiation with a peak wavelength of 222 nm. J. Appl. Phys. 122 (2017), 1–6, 10.1063/1.4996965 154902.
23. Lipatov, E.I., Genin, D.E., Tarasenko, V.F., Erofeev, M.V., Shulepov, M.A., Ripenko, V.C., Interaction of accelerated electrons with a diamond lattice. Proceedings of International Conference on Luminescence and Laser Physics, 2019, Russian Federation, Irkutsk, 50–51 01-06 June 2019.
24. Zagulov, F.Y., Kotov, A.S., Shpak, V.G., Yurike, Y.Y., Yalandin, M.I., RADAN-Small-sized pulsed-repetitive high-current accelerators of electrons. Pribory i Tekhnika Exp.(2), 1989, 146–149 (In Russian).
25. Kozyrev, A.V., Kozhevnikov, V.Yu, Vorobyev, M.S., Baksht, E.Kh, Burachenko, A.G., Koval, N.N., Tarasenko, V.F., Reconstruction of electron beam energy spectra for vacuum and gas diodes. Laser Part. Beams 33:2 (2015), 183–192, 10.1017/S0263034615000324.
26. Dudarev, V.V., Ivanov, N.G., Konovalov, I.N., Losev, V.F., Pavlinskii, A.V., Panchenko, Y.N., Highly efficient pulse-periodic XeCl lasers. Quant. Electron. 41:8 (2011), 687–691, 10.1070/QE2011v041n08ABEH014411.
27. Kociak, M., Zagonel, L.F., Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176 (2017), 112–131, 10.1016/j.ultramic.2016.11.018.
28. Lu, H.C., Peng, Y.C., Chou, S.L., Lo, J.I., Cheng, B.M., Chang, H.C., Far-UV-excited luminescence of nitrogen-vacancy centers: evidence for diamonds in space. Angew. Chem. 129:46 (2017), 14661–14665, 10.1002/anie.201707389.
29. Lu, H.C., Lo, J.I., Peng, Y.C., Chou, S.L., Cheng, B.M., Chang, H.C., Nitrogen-vacancy centers in diamond for high-performance detection of vacuum ultraviolet, extreme ultraviolet, and X-rays. ACS Appl. Mater. Interfaces 12:3 (2019), 3847–3853, 10.1021/acsami.9b18372.
30. Su, Z., Ren, Z., Bao, Y., Lao, X., Zhang, J., Zhang, J., Zhu, D., Lu, Y., Hao, Y., Xu, S., Luminescence landscapes of nitrogen-vacancy centers in diamond: quasi-localized vibrational resonances and selective coupling. J. Mater. Chem. C 7:26 (2019), 8086–8091, 10.1039/c9tc01954e.
31. Estela Pereira, M., Isabel, M., Jorge, B., Thomaz, M.F., Slow transitions in diamond: the photoluminescing Sl centre. J. Lumin. 31–32 (1984), 179–181, 10.1016/0022-2313(84)90240-0.
32. Savvin, A., Dormidonov, A., Smetanina, E., Mitrokhin, V., Lipatov, E., Genin, D., Potanin, S., Yelisseyev, A., Vins V. NV– Diamond Laser. 2021 preprint https://arxiv.org/ftp/arxiv/papers/2103/2103.03784.pdf.
|