Цитирование: | 1. Sobolev, N.V. Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Mantle; American Geophysical Union: Washington, DC, USA, 1974; p. 279.
2. Ashchepkov, I.V.; Vladykin, N.V.; Nikolaeva, I.V.; Palessky, S.V.; Logvinova, A.M.; Saprykin, A.I.; Khmel'nikova, O.S.; Anoshin, G.N. Mineralogy and Geochemistry of Mantle Inclusions and Mantle Column Structure of the Yubileinaya Kimberlite Pipe, Alakit Field, Yakutia. Dokl. Earth Sci. 2004, 395, 378–384.
3. Ashchepkov, I.V.; Logvinova, A.M.; Ntaflos, T.; Vladykin, N.V.; Downes, H. Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle sub-terranes beneath central Yakutia? Geosci. Front. 2017, 8, 671–692. [CrossRef]
4. Kostrovitsky, S.I.; Morikiyo, T.; Serov, I.V.; Yakovlev, D.A.; Amirzhanov, A.A. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russ. Geol. Geophys. 2007, 48, 272–290. [CrossRef]
5. Zaitsev, A.I.; Smelov, A.P. Isotopic Geochronology of Rocks of the Kimberlite Formation of the Yakutia Province (in Russian); Institute of Geology of Diamond and Precious Metals SB RAS: Yakutsk, Russia, 2010; p. 105.
6. Interfax Business Reports. 2019. Available online: https://www.interfax.ru/business/235642 (accessed on 12 August 2020).
7. Fedortchouk, Y.F.; Liebske, C.; McCammon, C. Diamond destruction and growth during mantle metasomatism.An experimental study of diamond resorption features. Earth Planet. Sci. Lett. 2019, 506, 493–506. [CrossRef]
8. Ukhanov, A.V.; Khachatryan, G.K. Diamonds from the Poiskovaya, Zapolyarnaya, and Leningrad kimberlite pipes, Northern Yakutia: Correlation of carbon isotopic composition and nitrogen content as an indicator of fluid diamond formation. Geol. Ore Depos. 2011, 53, 783–791. [CrossRef]
9. Khar'kiv, A.D.; Zinchuk, N.N.; Kr'ychkov, A.I. Primary Deposits of the Diamonds in the World (in Russian); Nedra: Moscow, Russia, 1998; p. 545.
10. Khmel'kov, A.M. Major Minerals of Kimberlites and Evolution in the Process of Creation of Their Lateral Areals (Example, the Yakutian Diamondiferous Province) (in Russian); ART: Novosibirsk, Russia, 2008; p. 252.
11. Ashchepkov, I.V.; Vladykin, N.V.; Rotman, A.Y.; Afanasiev, V.P.; Logvinova, A.M.; Kuchkin, A.; Palessky, V.S.; Nikolaeva, I.A.; Saprykin, A.I.; Anoshin, G.N.; et al. Variations of the mantle mineralogy and structure beneath Upper—Muna kimberlite field. Problems of Sources of Deep Magmatism and Plumes. In Proceedings of the 5 International Conference—Petropavlovsk-Kamchatsky, Petropavlovsk, Russia, 23 October 2005; pp. 170–187.
12. Ashchepkov, I.V.; Pokhilenko, N.P.; Vladykin, N.V.; Logvinova, A.M.; Kostrovitsky, S.I.; Afanasiev, V.P.; Pokhilenko, L.N.; Kuligin, S.S.; Malygina, L.V.; Alymova, N.V.; et al. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 2010, 485, 17–41. [CrossRef]
13. Yakovlev, D.A. Composition of Kimberlites of Upper Muna field (Yakutia). Ph.D. Thesis, Irkutsk Institute of Geochemistry, Irkutsk, Russia, 2007; p. 25. (In Russian).
14. Ziberna, L.; Nimis, P.; Kuzmin, D.V.; Malkovets, V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am. Mineral. 2016, 101, 2222–2232. [CrossRef]
15. Dymshits, A.M.; Sharygin, I.S.; Malkovets, V.G.; Yakovlev, I.V.; Gibsher, A.A.; Alifirova, T.A.; Vorobei, S.S.; Potapov, S.V.; Garanin, V.K. Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields. Minerals 2020, 10, 549. [CrossRef]
16. Sun, J.; Liu, C.-Z.; Tappe, S.; Kostrovitsky, S.; Yang, J.-H. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 2014, 404, 283–295. [CrossRef]
17. Evensen, N.M.; Hamilton, P.J.; Onions, R.K. Rare-earth abundances in chondritic meteorites. Geochim. Et Cosmochim. Acta 1979, 42, 1199–1212. [CrossRef]
18. Boyd, F.R.; Pokhilenko, N.P.; Pearson, D.G.; Mertzman, S.A.; Sobolev, N.V.; Finger, L.W. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. 1997, 128, 228–246. [CrossRef]
19. Pokhilenko, N.P.; Pearson, D.G.; Boyd, F.R.; Sobolev, N.V. Megacrystalline dunites: Sources of Siberian diamonds. Carnegie Inst. Wash. Yearb. 1991, 90, 11–18.
20. Giuliani, A.; Phillips, D.R.; Kamenetsky, V.S.; Kendrick, M.A.; Wyatt, B.A.; Goemann, K.; Hutchinson, G. Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. J. Petrol. 2014, 55, 831–858. [CrossRef]
21. Arndt, N.T.; Guitreau, M.; Boullier, A.-M.; Le Roex, A.; Tommasi, A.; Cordier, P.; Sobolev, A. Olivine and the origin of kimberlite. J. Petrol. 2010, 51, 573–602. [CrossRef]
22. Lavrent'ev, Y.G.; Usova, L.V. New version of KARAT program for quantitative X-ray spectral microanalysis. Zhurnal Anal. Khimii 1994, 5, 462–468.
23. Ashchepkov, I.V.; Andre, L.; Downes, H.; Belyatsky, B.A. Pyroxenites and megacrysts from Vitim picrite-basalts, Russia: Polybaric fractionation of rising melts in the mantle? J. Asian Earth Sci. 2011, 42, 14–37. [CrossRef]
24. Dawson, J.B.; Stephens, W.E. Statistical classification of garnets from kimberlite and associated xenoliths. J. Geol. 1975, 83, 589–607. [CrossRef]
25. Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857. [CrossRef]
26. Logvinova, A.M.; Taylor, L.A.; Floss, C.; Sobolev, N.V. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. Int. Geol. Rev. 2005, 47, 1223–1233. [CrossRef]
27. Ashchepkov, I.V.; Vladykin, N.N.; Ntaflos, T.; Kostrovitsky, S.I.; Prokopiev, S.A.; Downes, H.; Smelov, A.P.; Agashev, A.M.; Logvinova, A.M.; Kuligin, S.S.; et al. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophys. 2014, 634, 55–75. [CrossRef]
28. Ashchepkov, I.V.; Ntaflos, T.; Spetsius, Z.V.; Salikhov, R.F.; Downes, H. Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia, Russia. Geosci. Front. 2017, 8, 693–710. [CrossRef]
29. Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Seryotkin, Y.V.; Yefimova, E.S.; Floss, C.; Taylor, L.A. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: A comparative study. Lithos 2004, 77, 225–242. [CrossRef]
30. Burgess, S.R.; Harte, B. Tracing lithosphere evolution through the analysis of heterogeneous G9/G10 garnets in peridotite xenoliths, II: REE chemistry. J. Petrol. 2004, 45, 609–634. [CrossRef]
31. Boyd, F.R.; Pearson, D.G.; Nixon, P.H.; Mertzman, S.A. Low-calcium garnet harzburgites from southern Africa: Their relations to craton structure and diamond crystallization. Contrib. Mineral. Petrol. 1993, 113, 352–366. [CrossRef]
32. McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [CrossRef]
33. Manning, C.E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 2004, 223, 1–16. [CrossRef]
34. Brey, G.P.; Kohler, T. Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [CrossRef]
35. McGregor, I.D. The system MgO-SiO2-Al2O3: Solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am. Mineral. 1974, 59, 110–119.
36. Nimis, P.; Taylor, W. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [CrossRef]
37. Ashchepkov, I.V.; Ntaflos, T.; Logvinova, A.M.; Spetsius, Z.V.; Vladykin, N.V. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geosci. Front. 2017, 8, 775–795. [CrossRef]
38. O'Neill, H.S.C.; Wood, B.J. An experimental study of Fe-Mg-partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Mineral. Petrol. 1979, 70, 59–70. [CrossRef]
39. O'Neill, H.S.C.; Wall, V.J. The olivine orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. J. Petrol. 1987, 8, 1169–1191. [CrossRef]
40. Taylor, W.R.; Kammerman, M.; Hamilton, R. New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In 7th International Kimberlite Conference: Extended Abstracts; Red Roof Design: Cape Town, South Africa, 1998; pp. 891–901.
41. Ashchepkov, I.V.; Alymova, N.V.; Logvinova, A.M.; Vladykin, N.V.; Kuligin, S.S.; Mityukhin, S.I.; Downes, H.; Stegnitsky, Y.B.; Prokopiev, S.A.; Salikhov, R.F.; et al. Picroilmenites in Yakutian kimberlites: Variations and genetic models. Solid Earth 2014, 5, 915–938. [CrossRef]
42. Stagno, V.; Frost, D.J. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet. Sci. Lett. 2010, 300, 72–84. [CrossRef]
43. Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493, 84–88. [CrossRef]
44. Ashchepkov, I.V.; Rotman, A.Y.; Somov, S.V.; Afanasiev, V.P.; Afanasiev, V.P.; Downes, H.; Logvinova, A.M.; Nossyko, S.; Shimupi, J.; Palessky, S.V.; et al. Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola. Tectonophysics 2012, 530–531, 128–151. [CrossRef]
45. Gudmundsson, G.; Wood, B.J. Experimental tests of garnet peridotite oxygen barometry. Contrib. Mineral. Petrol. 1995, 119, 56–67. [CrossRef]
46. Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 8, 12467–12470. [CrossRef]
47. Day, H.W. A revised diamond-graphite transition curve. Am. Mineral. 2012, 97, 52–62. [CrossRef]
48. Pollack, H.N.; Chapman, D.S. On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 1977, 38, 279–296. [CrossRef]
49. O'Reilly, S.Y.; Griffin, W.L. A xenolith derived geotherm for southeastern Australia and it's geological implications. Tectonophysics 1985, 111, 41–63. [CrossRef]
50. O'Neill, H.S.C. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib. Mineral. Petrol. 1981, 77, 185–194. [CrossRef]
51. Suvorov, V.D.; Parasotka, B.S.; Chernyi, S.D. Deep seismic sounding studies in Yakutia. Phys. Solid Earth 1999, 35, 612–629.
52. Griffn, W.L.; Cousens, D.R.; Ryan, C.G.; Sie, S.H.; Suter, G.F. Ni in chrome pyrope garnets: A new geothermometer. Contrib. Mineral. Petrol. 1989, 103, 199–202. [CrossRef]
53. Ryan, C.G.; Griffin, W.L.; Pearson, N.J. Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J. Geophys. Res. B 1996, 101, 5611–5625. [CrossRef]
54. Batumike, J.M.; Griffin, W.L.; O'Reilly, S.Y. Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 2009, 112, 166–176. [CrossRef]
55. Ionov, D.A.; Doucet, L.S.; Ashchepkov, I.V. Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J. Petrol. 2010, 51, 2177–2210. [CrossRef]
56. Ashchepkov, I.V.; Ntaflos, T.; Kuligin, S.S.; Malygina, E.V.; Agashev, A.M.; Logvinova, A.M.; Mityukhin, S.I.; Alymova, N.V.; Vladykin, N.V.; Palessky, S.V.; et al. Deep-seated xenoliths from the brown breccia of the Udachnaya pipe, Siberia. In Proceedings of 10th International Kimberlite Conference; Pearson, D.G., Grütter, H.S., Harris, J.W., Kjarsgaard, B.A., O'Brien, H., Rao, N.V.C., Sparks, S., Eds.; Springer: New Delhi, India, 2013; Volume 1, pp. 59–74.
57. McCammon, C.A.; Griffin, W.L.; Shee, S.R.; O'Neill, H.S.C. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: Implications for the survival of diamond. Contrib. Mineral. Petrol. 2001, 141, 287–296. [CrossRef]
58. Ashchepkov, I.V.; Vladykin, N.V.; Ntaflos, T.; Downes, H.; Mitchel, R.; Smelov, A.P.; Rotman, A.Y.; Stegnitsky, Y.; Smarov, G.P.; Makovchuk, I.V.; et al. Regularities of the mantle lithosphere structure and formation beneath Siberian craton in comparison with other cratons. Gondwana Res. 2013, 23, 4–24. [CrossRef]
59. Griffin, W.L.; O'Reilly, S.Y.; Abe, N.; Aulbach, S.; Davies, R.M.; Pearson, N.J.; Doyle, B.J.; Kivi, K. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 2003, 127, 19–41. [CrossRef]
60. Herzberg, C. Geodynamic information in peridotite petrology. J. Petrol. 2004, 45, 2507–2530. [CrossRef]
61. Herzberg, C.; Rudnick, R. Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos 2012, 149, 4–15. [CrossRef]
62. Aulbach, S.; Griffin, W.L.; Pearson, N.J.; O'Reilly, S.Y.; Kivi, K.; Doyle, B.J. Mantle formation and evolution, Slave Craton: Constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem. Geol. 2004, 208, 61–80. [CrossRef]
63. Sun, C.; Dasgupta, R. Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 2019, 506, 38–52. [CrossRef]
64. Sanloup, C. Density of magmas at depth. Chem. Geol. 2016, 429, 51–59. [CrossRef]
65. Pokhilenko, N.P.; Sobolev, N.V.; Kuligin, S.S.; Shimizu, N. Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. Agora Political Sci. Undergrad. J. 1999, 2, 689–698.
66. Tang, M.; Lee, C.-T.A.; Rudnick, R.L.; Condi, K.C. Rapid mantle convection drove massive crustal thickening in the late Archean. Geochim. Et Cosmochim. Acta 2020, 2781, 6–15. [CrossRef]
67. Stachel, T.; Luth, R.W. Diamond formation—Where, when and how? Lithos 2015, 220, 200–220. [CrossRef]
68. Stachel, T.; Harris, J.W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [CrossRef]
69. Spetsius, Z.V.; Wiggers de Vries, D.F.; Davie, G.R. Combined C isotope and geochemical evidence for a recycled origin for diamondiferous eclogite xenoliths from kimberlites of Yakutia. Lithos 2009, 112, 1032–1042. [CrossRef]
70. Ionov, D.A.; Liu, Z.; Li, J.; Golovin, A.V.; Korsakov, A.V.; Xu, Y. The age and origin of cratonic lithospheric mantle: Archean dunites vs. Paleoproterozoic harzburgites from the Udachnaya kimberlite, Siberian craton. Geochim. Et Cosmochim. Acta 2020, 281, 67–90. [CrossRef]
71. Ziberna, L.; Nimis, P.; Zanetti, A.; Marzoli, A.; Sobolev, N.V. Metasomatic processes in the central Siberian Cratonic mantle: Evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J. Petrol. 2013, 54, 2379–2409. [CrossRef]
72. Griffin, W.L.; O'Reilly, S.Y. Cratonic lithospheric mantle: Is anything subducted? Episodes 2007, 30, 43–53. [CrossRef] [PubMed]
73. Moore, A.; Belousova, E. Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: Implications for mantle structure and the generation of kimberlite magmas. Contrib. Mineral. Petrol. 2005, 149, 462–481. [CrossRef]
74. Ashchepkov, I.V.; Kuligin, S.S.; Vladykin, N.V.; Downes, H.; Vavilov, M.A.; Nigmatulina, E.N.; Babushkina, S.A.; Tychkov, N.S.; Khmelnikova, O.S. Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geosci. Front. 2016, 7, 639–662. [CrossRef]
75. Afanasiev, V.P.; Ashchepkov, I.V.; Verzhak, V.V.; O'Brien, H.; Palessky, S.V. PT conditions and trace element variations of picroilmenites and pyropes from the Arkhangelsk region. J. Asian Earth Sci. 2013, 70–71, 45–63. [CrossRef]
76. Kargin, A.V.; Sazonova, L.V.; Nosova, A.A.; Tretyachenko, V.V. Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: Evidence for mantle metasomatism associated with kimberlite melts. Lithos 2016, 262, 442–455. [CrossRef]
77. Howarth, G.H.; Barry, P.H.; Pernet-Fisher, J.F.; Baziotis, I.P.; Pokhilenko, N.P.; Pokhilenko, L.N.; Bodnar, R.J.; Taylor, L.A.; Agashev, A.M. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos 2014, 184–187, 209–222. [CrossRef]
78. Kelemen, P.B.; Hart, S.R.; Bernstein, S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 1998, 164, 397–406. [CrossRef]
79. Jollands, M.C.; Hanger, B.J.; Yaxley, G.M.; Hermann, J.; Kilburn, M.R. Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths. Earth Planet. Sci. Lett. 2018, 481, 143–153. [CrossRef]
80. Ashchepkov, I.V.; Ivanov, A.S.; Kostrovitsky, S.I.; Vavilov, M.A.; Babushkina, S.A.; Vladykin, N.V.; Tychkov, N.S.; Medvedev, N.S. Terranes of the Siberian craton: Based in the thermobarometry and geochemistry of mantle xenocrysts. Geodyn. Tectonophys. 2019, 10, 197–245. [CrossRef]
81. Ashchepkov, I.V.; Vladykin, N.V.; Kalashnyk, H.A.; Medvedev, N.S.; Saprykin, A.I.; Downes, H.; Khmelnikova, O.S. Incompatible element-enriched mantle lithosphere beneath kimberlitic pipes in Priazovie, Ukrainian shield: Volatile-enriched focused melt flow and connection to mature crust? Int. Geol. Rev. 2020, 10, 1–22. [CrossRef]
82. Ashchepkov, I.V.; Logvinova, A.M.; Reimers, L.F.; Ntaflos, T.; Spetsius, Z.V.; Vladykin, N.V.; Downes, H.; Yudin, D.S.; Travin, A.V.; Makovchuk, I.V.; et al. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geosci. Front. 2015, 6, 687–714. [CrossRef]
83. Sun, J.; Rudnick, R.L.; Kostrovitsky, S.; Kalashnikova, T.; Kitajima, K.; Li, R.; Shu, Q. The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton. Contrib. Mineral. Petrol. 2020, 175, 25. [CrossRef]
84. Babushkina, S.A. Mantle phlogopites from Leningrad pipe (from Breccia with a Massive Texture). Vestnik NEFU. Earth Sci. Ser. 2020, 4, 14–19.
85. Dawson, J.B. Kimberlites and Their Xenoliths; Springer: Berlin/Heidelberg, Germany, 1980; p. 295.
86. Simon, N.S.C.; Carlson, R.W.; Pearson, D.G.; Davies, G.R. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 2007, 48, 589–625. [CrossRef]
87. Fitzpayne, A.; Giuliani, A.; Hergt, J.; Phillips, D.; Janney, P. New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos 2018, 318–319, 478–493. [CrossRef]
88. Gregoire, M.; Bell, D.R.; Le Roex, A.P. Garnet lherzolites from the Kaapvaal Craton (South Africa): Trace element evidence for a metasomatic history. J. Petrol. 2003, 44, 629. [CrossRef]
89. Gregoire, M.; Bell, D.R.; Le Roex, A.P. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: Their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Mineral. Petrol. 2002, 142, 603–625. [CrossRef]
90. Sun, C.; Liang, Y. An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem. Geol. 2014, 372, 80–91. [CrossRef]
91. Prouteau, G.; Scaillet, B.; Pichavant, M.; Maury, R. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 2001, 410, 197–200. [CrossRef]
92. Marocchi, M.; Hermann, J.; Tropper, P.; Bargossi, G.M.; Mair, V. Amphibole and phlogopite in “hybrid” metasomatic bands monitor trace element transfer at the interface between felsic and ultramafic rocks (Eastern Alps, Italy). Lithos 2010, 117, 135–148. [CrossRef]
93. Griffin, W.L.; Fisher, N.I.; Friedman, J.H.; O'Reilly, S.Y.; Ryan, C.G. Cr-pyrope garnets in the lithospheric mantle. 2. Compositional populations and their distribution in time and space. Geochem. Geophys. Geosyst. 2002, 12, 35. [CrossRef]
94. Fitzpayne, A.; Giuliani, A.; Harris, C.; Thomassot, E.; Cheng, C.; Hergt, J. Evidence for subduction-related signatures in the southern African lithosphere from the N-O isotopic composition of metasomatic mantle minerals. Geochim. Et Cosmochim. Acta 2019, 266, 237–257. [CrossRef]
95. Aulbach, S.; O'Reilly, S.Y.; Pearson, N.J. Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf–Nb/Ta variability. Contrib. Mineral. Petrol. 2011, 162, 1047–1062. [CrossRef]
96. Stoppa, F.; Schiazza, M.; Rosatelli, G.; Castorina, F.; Sharyg, V.V.; Ambrosio, F.A.; Vicentini, N. Italian carbonatite system: From mantle to ore-deposit. Ore Geol. Rev. 2019, 114, 103041. [CrossRef]
97. Meyer, M.; John, M.; Brandt, S.; Klemd, R. Mobilization of Ti–Nb–Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim. et Cosmochim. Acta 2007, 71, 4974–4996.
98. Hart, S.R.; Dunn, T. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 1993, 113, 1–8. [CrossRef]
99. Klemme, S.; van der Laan, S.R.; Foley, S.F.; Günther, D. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet. Sci. Lett. 1995, 133, 439–448. [CrossRef]
100. Hauri, E.H.; Wagner, T.P.; Grove, T.L. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 1994, 117, 149–166. [CrossRef]
101. Green, T.H.; Blundy, J.D.; Adam, J.; Yaxley, G.M. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200◦C. Lithos 2000, 53, 165–187. [CrossRef]
102. Xu, C.; Chakhmouradian, A.R.; Kynický, J.; Li, Y.; Song, W.; Chen, W. A Paleoproterozoic mantle source modified by subducted sediments under the North China craton. Geochim. Et Cosmochim. Acta 2019, 245, 222–239. [CrossRef]
103. Golovin, A.V.; Sharygin, I.S.; Kamenetsky, V.S.; Korsakov, A.V.; Yaxley, G.M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 2018, 483, 261–274. [CrossRef]
104. Aulbach, S.; Massuyeau, M.; Garber, J.M.; Gerdes, A.; Heaman, L.M.; Viljoen, K.S. Ultramafic carbonated melt-and auto-metasomatism in mantle eclogites: Compositional effects and geophysical consequences. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008774. [CrossRef]
105. Korolev, N.M.; Kopylova, M.; Bussweiler, Y.; Pearson, D.G.; Gurney, J.; Davidsone, J. The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume? Lithos 2018, 304–307, 362–373. [CrossRef]
106. Aulbach, S.; Jacob, D.E.; Cartigny, P.; Stern, R.A.; Simonetti, S.S.; Wörner, G.; Viljoeng, K.S. Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochim. Et Cosmochim. Acta 2017, 213, 574–592. [CrossRef]
107. Moore. Type II diamonds: Flamboyant megacrysts? S. Afr. J. Geol. 2009, 112, 23–38. [CrossRef]
108. Pearson, D.; Shirey, S.; Bulanova, G.; Carlson, R.; Milledge, H. Re-Os isotope measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochem. Cosmochim. Acta 1999, 63, 703–711. [CrossRef]
109. Schmitt, A.K.; Zack, T.; Kooijman, E.; Logvinova, A.M.; Sobolev, N.V. U–Pb ages of rare rutile inclusions in diamond indicate entrapment synchronous with kimberlite formation. Lithos 2019, 350–351, 105251. [CrossRef]
110. Moore, A.E.; Lock, N.P. The origin of mantle-derived megacrysts and sheared peridotites—evidence from kimberlites in the northern Lesotho—Orange Free State (South Africa) and Botswana pipe clusters. South Africa J. Geol. 2001, 104, 23–38. [CrossRef]
111. Karato, S. Rheology of the Earth's mantle: A historical review. Gondwana Res. 2010, 18, 17–45. [CrossRef]
112. Tappe, S.; Smart, K.A.; Torsvik, T.H.; Massuyeau, M.; de Wit, M.C.J. Geodynamics of kimberlites on a cooling earth: Clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 2018, 484, 1–14. [CrossRef]
113. Tappe, S.; Budde, G.; Stracke, A.; Wilson, A.; Kleine, T. The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary. Earth Planet. Sci. Lett. 2020, 547, 116473. [CrossRef]
114. Pal'yanov, N.; Sokol, A.G.; Borzdov, M.; Khokhryakov, A.F. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: An experimental study. Lithos 2002, 60, 145–159. [CrossRef]
115. Palyanov, Y.N.; Khokhryakov, A.F.; Borzdov, Y.M.; Kupriyanov, I.N. Diamond growth and morphology under the influence of impurity adsorption. Cryst. Growth Des. 2013, 13, 5411–5419. [CrossRef]
116. Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Russ. Geol. Geophys. 2015, 56, 196–210. [CrossRef]
117. Sobolev, N.V.; Logvinova, A.M.; Efimova, E.S. Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: Implications for role of volatiles in diamond formation. Russ. Geol. Geophys. 2009, 50, 1234–1248. [CrossRef]
|