Инд. авторы: Safonov A.V., Boguslavsky A.E., Gaskova O.L., Boldyrev K.A., Shvartseva O.S., Khvashchevskaya A.A., Popova N.M.
Заглавие: Biogeochemical Modelling of Uranium Immobilization and Aquifer Remediation Strategies Near NCCP Sludge Storage Facilities
Библ. ссылка: Safonov A.V., Boguslavsky A.E., Gaskova O.L., Boldyrev K.A., Shvartseva O.S., Khvashchevskaya A.A., Popova N.M. Biogeochemical Modelling of Uranium Immobilization and Aquifer Remediation Strategies Near NCCP Sludge Storage Facilities // APPLIED SCIENCES-BASEL. - 2021. - Vol.11. - Iss. 6. - Art.2875.
Внешние системы: DOI: 10.3390/app11062875; РИНЦ: 46770404; WoS: 000645709200001;
Реферат: eng: Nitrate is a substance which influences the prevailing redox conditions in groundwater, and in turn the behaviour of U. The study of groundwater in an area with low-level radioactive sludge storage facilities has shown their contamination with sulphate and nitrate anions, uranium, and some associated metals. The uranyl ion content in the most contaminated NO3-Cl-SO4-Na borehole is 2000 times higher (1.58 mg/L) than that in the background water. At the same time, assessment of the main physiological groups of microorganisms showed a maximum number of denitrifying and sulphate-reducing bacteria (e.g., Sulfurimonas) in the water from the same borehole. Biogenic factors of radionuclide immobilization on sandy rocks of upper aquifers have been experimentally investigated. Different reduction rates of NO3-, SO42-, Fe(III) and U(VI) with stimulated microbial activity were dependent on the pollution degree. Moreover, 16S rRNA gene analysis of the microbial community after whey addition revealed a significant decrease in microbial diversity and the activation of nonspecific nitrate-reducing bacteria (genera Rhodococcus and Rhodobacter). The second influential factor can be identified as the formation of microbial biofilms on the sandy loam samples, which has a positive effect on U sorption (an increase in Kd value is up to 35%). As PHREEQC physicochemical modelling numerically confirmed, the third most influential factor that drives U mobility is the biogenic-mediated formation of a sulphide redox buffer. This study brings important information, which helps to assess the long-term stability of U in the environment of radioactive sludge storage facilities.
Ключевые слова: BIOFILMS; GROUNDWATER; BIOREMEDIATION; BIOSTIMULATION; REDUCTION; BIOGENIC FACTORS; DAIRY WASTE-WATER; BACTERIAL COMMUNITY STRUCTURE; denitrification; 16S rRNA analysis; bioremediation; uranyl ion; aquifers; sludge pond; MICROBIAL COMMUNITY; SORPTION;
Издано: 2021
Физ. характеристика: 2875
Цитирование: 1. IAEA. Environmental contamination from uranium production facilities and their remediation. In Proceedings of the an International Workshop, Lisbon, Portugal, 11-13 February 2004; IAEA: Vienna, Austria, 2005. Available online: Https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1228_web.pdf (accessed on 20 November 2020). 2. Boguslavsky, A.E.; Gaskova, O.L.; Naymushina, O.S.; Popova, N.M.; Safonov, A.V. Environmental monitoring of low-level radioactive waste disposal in electrochemical plant facilities in Zelenogorsk, Russia. Appl. Geochem. 2020, 119, 104598. [Google Scholar] [CrossRef] 3. Gaskova, O.L.; Boguslavskiy, A.E. Groundwater geochemistry near the storage sites of low-level radioactive waste: Implications for uranium migration. Procedia Earth Planet. Sci. 2013, 7, 288-291. [Google Scholar] [CrossRef] 4. Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R. Microbial reduction of uranium. Nature 1991, 350, 413-416. [Google Scholar] [CrossRef] 5. Newsome, L.; Morris, K.; Trivedi, D.; Atherton, N.; Lloyd, J.R. Microbial reduction of uranium(VI) in sediments of different lithologies collected from Sellafield. Appl. Geochem. 2014, 51, 55-64. [Google Scholar] [CrossRef] 6. Safonov, A.V.; Babich, T.L.; Sokolova, D.S.; Grouzdev, D.S.; Tourova, T.P.; Poltaraus, A.B.; Zakharova, E.V.; Merkel, A.Y.; Novikov, A.P.; Nazina, T.N. Microbial community and in situ bioremediation of groundwater by nitrate removal in the zone of a radioactive waste surface repository. Front. Microbiol. 2018, 9, 1985. [Google Scholar] [CrossRef] [PubMed] 7. Manobala, T.; Shukla, S.K.; Rao, T.S.; Kumar, M.D. Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm. Chemosphere 2020, 269, 128722. [Google Scholar] [CrossRef] [PubMed] 8. Cao, B.; Ahmed, B.; Kennedy, D.W.; Wang, Z.; Shi, L.; Marshall, M.J.; Fredrickson, J.K.; Isern, N.G.; Majors, P.D.; Beyenal, H. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ. Sci. Technol. 2011, 45, 5483-5490. [Google Scholar] [CrossRef] [PubMed] 9. Majumder, E.L.-W.; Wall, J.D. Uranium bio-transformations: Chemical or biological processes. Open J. Inorg. Chem. 2017, 7, 28-60. [Google Scholar] [CrossRef] 10. Zhao, C.; Li, X.; Ding, C.; Liao, J.; Du, L.; Yang, J.; Yang, Y.; Zhang, D.; Tang, J.; Liu, N.; et al. Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS. J. Radioanal. Nucl. Chem. 2016, 310, 165-175. [Google Scholar] [CrossRef] 11. Bonnetti, C.; Xiaodong, L.; Yan, Z.; Cuney, M.; Michels, R.; Malartre, F.; Mercadier, J.; Cai, J. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China. Ore Geol. Rev. 2017, 82, 108-129. [Google Scholar] [CrossRef] 12. Zhengji, Y. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe(III) (hydr) oxides. J. Environ. Radioact. 2010, 101, 700-705. [Google Scholar] [CrossRef] 13. Newsome, L.; Morris, K.; Lloyd, J.R. Uranium biominerals precipitated by an environmental isolate of Serratia under anaerobic conditions. PLoS ONE 2015, 10, e0132392. [Google Scholar] [CrossRef] 14. Berk, V.W.; Fu, O.Y. Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: Risks for groundwater resources. Environ. Sci. Technol. 2017, 51, 337-345. [Google Scholar] [CrossRef] 15. Komlos, J.; Peacock, A.; Kukkadapu, R.K.; Jaffe, P.R. Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions. Geochim. Cosmochim. Acta 2008, 72, 3603-3615. [Google Scholar] [CrossRef] 16. Safonov, A.V.; Andryushchenko, N.D.; Ivanov, P.V.; Boldyrev, K.A.; Babich, T.L.; German, K.E.; Zakharova, E.V. Biogenic factors of radionuclide immobilization on sandy rocks of upper aquifers. Radiochemistry 2019, 61, 99-108. [Google Scholar] [CrossRef] 17. IAEA-TECDOC-1403. The Long-Term Stabilization of Uranium Mill Tailings; Final Report of a Co-Ordinated Research Project 2000-2004; IAEA: Vienna, Austria, 2004. [Google Scholar] 18. North, N.N.; Dollhopf, S.L.; Petrie, L.; Istok, J.D.; Balkwill, D.L.; Kostka, J.E. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Microbiol. 2004, 70, 4911-4920. [Google Scholar] [CrossRef] [PubMed] 19. Wu, W.M.; Carley, J.; Luo, J.; Ginder-Vogel, M.A.; Cardenas, E. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ. Sci. Technol. 2007, 41, 5716-5723. [Google Scholar] [CrossRef] [PubMed] 20. Xu, M.; Wu, W.M.; Wu, L.; He, Z.; van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; et al. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J. 2010, 4, 1060-1070. [Google Scholar] [CrossRef] [PubMed] 21. Maleke, M.; Williams, P.; Castillo, J.; Botes, E.; Ojo, A.; DeFlaun, M.; van Heerden, E. Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community. Environ. Sci. Pollut. Res. 2015, 22, 8442-8450. [Google Scholar] [CrossRef] [PubMed] 22. Safonov, A.V.; Boguslavskiy, A.E.; Boldyrev, K.A.; Zayceva, L.V. Biogenic factors of formation of geochemical uranium anomalies near the sludge storage of the Novosibirsk chemical concentrate plant. Geochem. Int. 2019, 57, 709-715. [Google Scholar] [CrossRef] 23. GOST 18963-73. Drinking Water. Methods of Sanitary-Bacteriological Analysis; ICS 13.060.20; Federal Agency on 567 Technical Regulating and Metrology (ROSSTANDART): Moscow, Russia, 1973. 24. Plakunov, V.K.; Martyanov, S.V.; Teteneva, N.A.; Zhurina, M.A. universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models. Microbiology 2016, 85, 509-513. [Google Scholar] [CrossRef] 25. Daigger, G.T. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environ. Res. 2014, 86, 204-209. [Google Scholar] [CrossRef] [PubMed] 26. Krainov, S.R.; Solomin, G.A.; Zakutin, V.P. Oxidation-reduction conditions of nitrogen compound transformations in groundwater (in the context of geochemical-ecological problems). Geokhimiya 1991, 6, 831-882. [Google Scholar] 27. Vodyanitskii, Y.N.; Mineev, V.G. Degradation of nitrates with the participation of Fe(II) and Fe(O) in groundwater: A review. Eurasian J. Soil Sci. 2015, 48, 139-147. [Google Scholar] [CrossRef] 28. Zhang, M.; Zhang, T.; Shao, M.F.; Fang, H.H.P. Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere 2009, 76, 677-682. [Google Scholar] [CrossRef] 29. Zhang, S.; Pang, S.; Wang, P.; Wang, C.; Guo, C.; Addo, F.G.; Li, Y. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 2016, 6, 36178. [Google Scholar] [CrossRef] 30. Krawczyk-Bärsch, E.; Scheinost, A.C.; Rossberg, A.; Muller, K.; Bok, F.; Hallbeck, L.; Lehrich, J.; Schmeide, K. Uranium and neptunium retention mechanisms in Gallionella ferruginea/ferrihydrite systems for remediation purposes. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] 31. Newsome, L.; Morris, K.; Lloyd, J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014, 363, 164-184. [Google Scholar] [CrossRef] 32. Chang, H.K.; Zylstra, G.J. Xanthomonads. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1805-1811. [Google Scholar] 33. Nelson, W.C.; Stegen, J.C. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol. 2015, 6, 713. [Google Scholar] [CrossRef] 34. Kumar, S.; Herrmann, M.; Thamdrup, B.; Schwab, V.F.; Geesink, P.; Trumbore, S.E.; Totsche, K.-U.; Kusel, K. Nitrogen loss from pristine carbonate-rock aquifers of the Hainich Critical Zone exploratory (Germany) is primarily driven by chemolithoautotrophic Anammox processes. Front. Microbiol. 2017, 8, 1951. [Google Scholar] [CrossRef] 35. Lee, J.-H.; Lee, B.-J.; Yun, U.; Koh, D.-C. In-situ microbial colonization and its potential contribution on biofilm formation in subsurface sediments. J. Appl. Biol. Chem. 2019, 62, 51-56. [Google Scholar] [CrossRef] 36. Dragičević, T.L.; Hren, M.Z.; Grgas, D.; Buzdum, I. The potential of dairy wastewater for denitrification. Mljekarstvo 2010, 60, 191-197. [Google Scholar] 37. Slavov, A.K. General characteristics and treatment possibilities of dairy wastewater—A review. Food Technol. Biotechnol. 2017, 55, 14-28. [Google Scholar] [CrossRef] [PubMed] 38. Voss, I.; Steinbüchel, A. High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl. Microbiol. Biotechnol. 2001, 55, 547-555. [Google Scholar] [CrossRef] [PubMed] 39. Barathi, S.; Meng, Y.; Yu, Z.; Ni, S.-Q.; Meng, F. Roles of nitrite in mediating the composition and metacommunity of multispecies biofilms. J. Water Proc. Eng. 2021, 40, 101764. [Google Scholar] [CrossRef] 40. Flemming, H.-C. Sorption sites in biofilms. Water Sci. Technol. 1995, 32, 27-33. [Google Scholar] [CrossRef] 41. Safonov, A.V.; Perepelov, A.V.; Babich, T.L.; Popova, N.M.; Grouzdev, D.S.; Filatov, A.V.; Shashkov, A.S.; Demina, L.I.; Nazina, T.N. Structure and gene cluster of the o-polysaccharide from Pseudomonas veronii a-6-5 and its uranium bonding. Int. J. Biol. Macromol. 2020, 165, 2197-2204. [Google Scholar] [CrossRef] 42. Kazy, S.K.; Sar, P.; D'Souza, S.F. Studies on uranium removal by the extracellular 504 polysaccharide of a Pseudomonas aeruginosa strain. Bioremediat. J. 2008, 12, 47-57. [Google Scholar] [CrossRef] 43. Kondratyeva, L.M.; Golubeva, E.M.; Litvinenko, Z.N. Microbiological factors of the formation of iron-containing minerals. Contemp. Probl. Ecol. 2016, 9, 318-328. [Google Scholar] [CrossRef] 44. Winstanley, E.H.; Morris, K.; Abrahamsen-Mills, L.G.; Blackham, R.; Shaw, S. U(VI) sorption during ferrihydrite formation: Underpinning radioactive effluent treatment. J. Hazard. Mater. 2019, 366, 98-104. [Google Scholar] [CrossRef] 45. Wiesmann, U. Biological nitrogen removal from wastewater. In Biotechnics/Wastewater. Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 1994; Volume 51, pp. 113-154. [Google Scholar] 46. Green, S.; Prakash, O.; Gihring, T.; Akob, D.M.; Jasrotia, P.; Jardine, P.M.; Watson, D.B.; Brown, S.D.; Palumbo, A.V.; Kostka, J.E. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl. Environ. Microbiol. 2010, 76, 3244-3254. [Google Scholar] [CrossRef] [PubMed] 47. Munasinghe, P.S.; Madden, M.E.E.; Brooks, S.C.; Elwood Madden, A.S. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution. Appl. Geochem. 2015, 58, 147-160. [Google Scholar] [CrossRef] 48. Wellman, D.M.; McNamara, B.K.; Bacon, D.H.; Cordova, E.A.; Ermi, R.M.; Top, L.M. Dissolution kinetics of meta-torbernite under circum-neutral to alkaline conditions. Environ. Chem. 2009, 6, 551-560. [Google Scholar] [CrossRef] 49. Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions. Geomicrobiol. J. 2011, 28, 444-456. [Google Scholar] [CrossRef] 50. Stetten, L.; Lefebvre, P.; Le Pape, P.; Mangeret, A.; Blanchart, P.; Merrot, P.; Brest, J.; Julien, A.; Bargar, J.R.; Cazala, C.; et al. Experimental redox transformations of uranium phosphate minerals and mononuclear species in a contaminated wetland. J. Hazard. Mater. 2020, 384, 121362. [Google Scholar] [CrossRef] 51. Reerburgh, W.S. A major sink and flux control for methane in marine sediments: Anaerobic consumption. In The Dynamic Environment of the Ocean Floor; Fanning, K.A., Manheim, R.T., Eds.; Lexington Books: Lexington, KY, USA, 1982; pp. 203-218. [Google Scholar] 52. Strakhovenko, V.D.; Gaskova, O.L. Thermodynamic model of formation of carbonates and uranium mineral phases in lakes Namshi-Nur and Tsagan-Tyrm (Cisbaikalia). Russ. Geol. Geophys. 2018, 59, 374-385. [Google Scholar] [CrossRef] 53. Dullies, F.; Lutze, W.; Gong, W.L.; Nuttall, H.E. Biological reduction of uranium—from the laboratory to the field. Sci. Total Environ. 2010, 408, 6260-6271. [Google Scholar] [CrossRef] [PubMed] 54. Mehta, V.S.; Mailot, F.; Wang, Z.; Catalano, J.G.; Giammar, D.E. Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Water Res. 2015, 69, 307-317. [Google Scholar] [CrossRef] 55. Qafoku, N.P.; Kukkadapu, R.K.; McKinley, J.P.; Arey, B.W.; Kelly, S.D.; Wang, C.; Resch, C.T.; Long, P.E. Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment. Environ. Sci. Technol. 2009, 43, 8528-8534. [Google Scholar] [CrossRef] [PubMed] 56. Bopp, I.V.; Charles, J.; Lundstrom, C.C.; Johnson, T.M.; Sandford, R.A.; Long, P.E.; Williams, K.H. Uranium 238U/235U isotope ratios as indicators of reduction: Results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A. Environ. Sci. Technol. 2010, 44, 5927-5933. [Google Scholar] [CrossRef] [PubMed] 57. Ohan, J.A.; Saneiyan, S.; Lee, J.; Bartlow, A.W.; Ntarlagiannis, D.; Burns, S.E.; Colwell, F.S. Microbial and geochemical dynamics of an aquifer stimulated for microbial induced calcite precipitation (MICP). Front. Microbiol. 2020, 11, 1327. [Google Scholar] [CrossRef] 58. Xu, J.; Veeramani, H.; Qafoku, N.P.; Singh, G.; Riquelme, M.V.; Pruden, A.; Kukkadapu, R.K.; Gartman, B.N.; Hochella, M.F., Jr. Efficacy of acetate-amended biostimulation for uranium sequestration: Combined analysis of sediment/groundwater geochemistry and bacterial community structure. Appl. Geochem. 2017, 78, 172-185. [Google Scholar] [CrossRef] 59. Moon, H.S.; McGuinness, L.; Kukkadapu, R.K.; Peacock, A.D.; Komlos, J.; Kerkhof, L.J.; Long, P.E.; Jaffe, P.R. Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics. Water Res. 2010, 44, 4015-4028. [Google Scholar] [CrossRef] [PubMed] 60. Veeramani, H.; Scheinost, A.C.; Monsegue, N.; Qafoku, N.P.; Kukkadapu, R.K.; Newville, M.; Lanzirotti, A.; Pruden, A.; Murayama, M.; Hochella, M.F., Jr. Abiotic reductive immobilization of U(VI) by biogenic mackinawite. Environ. Sci. Technol. 2013, 47, 2361-2369. [Google Scholar] [CrossRef] 61. Hyun, S.P.; Davis, J.A.; Sun, K.; Hayes, K.F. Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ. Sci. Technol. 2012, 46, 3369-3376. [Google Scholar] [CrossRef] 62. Bi, Y.; Hayes, K.F. Nano-FeS inhibits UO2 reoxidation under varied oxic conditions. Environ. Sci. Technol. 2014, 48, 632-640. [Google Scholar] [CrossRef] 63. Chan, C.S.; Fakra, S.C.; Edwards, D.C.; Emerson, D.; Banfield, J.F. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim. Cosmochim. Acta 2009, 73, 3807-3818. [Google Scholar] [CrossRef] 64. Chan, C.S.; de Stasio, G.; Welch, S.A.; Girasole, M.; Frazer, B.H. Microbial polysaccharides template assembly of nanocrystal fibers. Science 2004, 303, 1656-1658. [Google Scholar] [CrossRef] 65. Dynes, J.J.; Tyliszczak, T.; Araki, T.; Lawrence, J.R.; Swerhone, G.D.W.; Leppard, G.G.; Hitchcock, A.P. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 2006, 40, 1556-1565. [Google Scholar] [CrossRef] [PubMed]