Цитирование: | 1. IAEA. Environmental contamination from uranium production facilities and their remediation. In Proceedings of the an International Workshop, Lisbon, Portugal, 11-13 February 2004; IAEA: Vienna, Austria, 2005. Available online: Https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1228_web.pdf (accessed on 20 November 2020).
2. Boguslavsky, A.E.; Gaskova, O.L.; Naymushina, O.S.; Popova, N.M.; Safonov, A.V. Environmental monitoring of low-level radioactive waste disposal in electrochemical plant facilities in Zelenogorsk, Russia. Appl. Geochem. 2020, 119, 104598. [Google Scholar] [CrossRef]
3. Gaskova, O.L.; Boguslavskiy, A.E. Groundwater geochemistry near the storage sites of low-level radioactive waste: Implications for uranium migration. Procedia Earth Planet. Sci. 2013, 7, 288-291. [Google Scholar] [CrossRef]
4. Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R. Microbial reduction of uranium. Nature 1991, 350, 413-416. [Google Scholar] [CrossRef]
5. Newsome, L.; Morris, K.; Trivedi, D.; Atherton, N.; Lloyd, J.R. Microbial reduction of uranium(VI) in sediments of different lithologies collected from Sellafield. Appl. Geochem. 2014, 51, 55-64. [Google Scholar] [CrossRef]
6. Safonov, A.V.; Babich, T.L.; Sokolova, D.S.; Grouzdev, D.S.; Tourova, T.P.; Poltaraus, A.B.; Zakharova, E.V.; Merkel, A.Y.; Novikov, A.P.; Nazina, T.N. Microbial community and in situ bioremediation of groundwater by nitrate removal in the zone of a radioactive waste surface repository. Front. Microbiol. 2018, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
7. Manobala, T.; Shukla, S.K.; Rao, T.S.; Kumar, M.D. Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm. Chemosphere 2020, 269, 128722. [Google Scholar] [CrossRef] [PubMed]
8. Cao, B.; Ahmed, B.; Kennedy, D.W.; Wang, Z.; Shi, L.; Marshall, M.J.; Fredrickson, J.K.; Isern, N.G.; Majors, P.D.; Beyenal, H. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ. Sci. Technol. 2011, 45, 5483-5490. [Google Scholar] [CrossRef] [PubMed]
9. Majumder, E.L.-W.; Wall, J.D. Uranium bio-transformations: Chemical or biological processes. Open J. Inorg. Chem. 2017, 7, 28-60. [Google Scholar] [CrossRef]
10. Zhao, C.; Li, X.; Ding, C.; Liao, J.; Du, L.; Yang, J.; Yang, Y.; Zhang, D.; Tang, J.; Liu, N.; et al. Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS. J. Radioanal. Nucl. Chem. 2016, 310, 165-175. [Google Scholar] [CrossRef]
11. Bonnetti, C.; Xiaodong, L.; Yan, Z.; Cuney, M.; Michels, R.; Malartre, F.; Mercadier, J.; Cai, J. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China. Ore Geol. Rev. 2017, 82, 108-129. [Google Scholar] [CrossRef]
12. Zhengji, Y. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe(III) (hydr) oxides. J. Environ. Radioact. 2010, 101, 700-705. [Google Scholar] [CrossRef]
13. Newsome, L.; Morris, K.; Lloyd, J.R. Uranium biominerals precipitated by an environmental isolate of Serratia under anaerobic conditions. PLoS ONE 2015, 10, e0132392. [Google Scholar] [CrossRef]
14. Berk, V.W.; Fu, O.Y. Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: Risks for groundwater resources. Environ. Sci. Technol. 2017, 51, 337-345. [Google Scholar] [CrossRef]
15. Komlos, J.; Peacock, A.; Kukkadapu, R.K.; Jaffe, P.R. Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions. Geochim. Cosmochim. Acta 2008, 72, 3603-3615. [Google Scholar] [CrossRef]
16. Safonov, A.V.; Andryushchenko, N.D.; Ivanov, P.V.; Boldyrev, K.A.; Babich, T.L.; German, K.E.; Zakharova, E.V. Biogenic factors of radionuclide immobilization on sandy rocks of upper aquifers. Radiochemistry 2019, 61, 99-108. [Google Scholar] [CrossRef]
17. IAEA-TECDOC-1403. The Long-Term Stabilization of Uranium Mill Tailings; Final Report of a Co-Ordinated Research Project 2000-2004; IAEA: Vienna, Austria, 2004. [Google Scholar]
18. North, N.N.; Dollhopf, S.L.; Petrie, L.; Istok, J.D.; Balkwill, D.L.; Kostka, J.E. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Microbiol. 2004, 70, 4911-4920. [Google Scholar] [CrossRef] [PubMed]
19. Wu, W.M.; Carley, J.; Luo, J.; Ginder-Vogel, M.A.; Cardenas, E. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ. Sci. Technol. 2007, 41, 5716-5723. [Google Scholar] [CrossRef] [PubMed]
20. Xu, M.; Wu, W.M.; Wu, L.; He, Z.; van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; et al. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J. 2010, 4, 1060-1070. [Google Scholar] [CrossRef] [PubMed]
21. Maleke, M.; Williams, P.; Castillo, J.; Botes, E.; Ojo, A.; DeFlaun, M.; van Heerden, E. Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community. Environ. Sci. Pollut. Res. 2015, 22, 8442-8450. [Google Scholar] [CrossRef] [PubMed]
22. Safonov, A.V.; Boguslavskiy, A.E.; Boldyrev, K.A.; Zayceva, L.V. Biogenic factors of formation of geochemical uranium anomalies near the sludge storage of the Novosibirsk chemical concentrate plant. Geochem. Int. 2019, 57, 709-715. [Google Scholar] [CrossRef]
23. GOST 18963-73. Drinking Water. Methods of Sanitary-Bacteriological Analysis; ICS 13.060.20; Federal Agency on 567 Technical Regulating and Metrology (ROSSTANDART): Moscow, Russia, 1973.
24. Plakunov, V.K.; Martyanov, S.V.; Teteneva, N.A.; Zhurina, M.A. universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models. Microbiology 2016, 85, 509-513. [Google Scholar] [CrossRef]
25. Daigger, G.T. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environ. Res. 2014, 86, 204-209. [Google Scholar] [CrossRef] [PubMed]
26. Krainov, S.R.; Solomin, G.A.; Zakutin, V.P. Oxidation-reduction conditions of nitrogen compound transformations in groundwater (in the context of geochemical-ecological problems). Geokhimiya 1991, 6, 831-882. [Google Scholar]
27. Vodyanitskii, Y.N.; Mineev, V.G. Degradation of nitrates with the participation of Fe(II) and Fe(O) in groundwater: A review. Eurasian J. Soil Sci. 2015, 48, 139-147. [Google Scholar] [CrossRef]
28. Zhang, M.; Zhang, T.; Shao, M.F.; Fang, H.H.P. Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere 2009, 76, 677-682. [Google Scholar] [CrossRef]
29. Zhang, S.; Pang, S.; Wang, P.; Wang, C.; Guo, C.; Addo, F.G.; Li, Y. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 2016, 6, 36178. [Google Scholar] [CrossRef]
30. Krawczyk-Bärsch, E.; Scheinost, A.C.; Rossberg, A.; Muller, K.; Bok, F.; Hallbeck, L.; Lehrich, J.; Schmeide, K. Uranium and neptunium retention mechanisms in Gallionella ferruginea/ferrihydrite systems for remediation purposes. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
31. Newsome, L.; Morris, K.; Lloyd, J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014, 363, 164-184. [Google Scholar] [CrossRef]
32. Chang, H.K.; Zylstra, G.J. Xanthomonads. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1805-1811. [Google Scholar]
33. Nelson, W.C.; Stegen, J.C. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol. 2015, 6, 713. [Google Scholar] [CrossRef]
34. Kumar, S.; Herrmann, M.; Thamdrup, B.; Schwab, V.F.; Geesink, P.; Trumbore, S.E.; Totsche, K.-U.; Kusel, K. Nitrogen loss from pristine carbonate-rock aquifers of the Hainich Critical Zone exploratory (Germany) is primarily driven by chemolithoautotrophic Anammox processes. Front. Microbiol. 2017, 8, 1951. [Google Scholar] [CrossRef]
35. Lee, J.-H.; Lee, B.-J.; Yun, U.; Koh, D.-C. In-situ microbial colonization and its potential contribution on biofilm formation in subsurface sediments. J. Appl. Biol. Chem. 2019, 62, 51-56. [Google Scholar] [CrossRef]
36. Dragičević, T.L.; Hren, M.Z.; Grgas, D.; Buzdum, I. The potential of dairy wastewater for denitrification. Mljekarstvo 2010, 60, 191-197. [Google Scholar]
37. Slavov, A.K. General characteristics and treatment possibilities of dairy wastewater—A review. Food Technol. Biotechnol. 2017, 55, 14-28. [Google Scholar] [CrossRef] [PubMed]
38. Voss, I.; Steinbüchel, A. High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl. Microbiol. Biotechnol. 2001, 55, 547-555. [Google Scholar] [CrossRef] [PubMed]
39. Barathi, S.; Meng, Y.; Yu, Z.; Ni, S.-Q.; Meng, F. Roles of nitrite in mediating the composition and metacommunity of multispecies biofilms. J. Water Proc. Eng. 2021, 40, 101764. [Google Scholar] [CrossRef]
40. Flemming, H.-C. Sorption sites in biofilms. Water Sci. Technol. 1995, 32, 27-33. [Google Scholar] [CrossRef]
41. Safonov, A.V.; Perepelov, A.V.; Babich, T.L.; Popova, N.M.; Grouzdev, D.S.; Filatov, A.V.; Shashkov, A.S.; Demina, L.I.; Nazina, T.N. Structure and gene cluster of the o-polysaccharide from Pseudomonas veronii a-6-5 and its uranium bonding. Int. J. Biol. Macromol. 2020, 165, 2197-2204. [Google Scholar] [CrossRef]
42. Kazy, S.K.; Sar, P.; D'Souza, S.F. Studies on uranium removal by the extracellular 504 polysaccharide of a Pseudomonas aeruginosa strain. Bioremediat. J. 2008, 12, 47-57. [Google Scholar] [CrossRef]
43. Kondratyeva, L.M.; Golubeva, E.M.; Litvinenko, Z.N. Microbiological factors of the formation of iron-containing minerals. Contemp. Probl. Ecol. 2016, 9, 318-328. [Google Scholar] [CrossRef]
44. Winstanley, E.H.; Morris, K.; Abrahamsen-Mills, L.G.; Blackham, R.; Shaw, S. U(VI) sorption during ferrihydrite formation: Underpinning radioactive effluent treatment. J. Hazard. Mater. 2019, 366, 98-104. [Google Scholar] [CrossRef]
45. Wiesmann, U. Biological nitrogen removal from wastewater. In Biotechnics/Wastewater. Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 1994; Volume 51, pp. 113-154. [Google Scholar]
46. Green, S.; Prakash, O.; Gihring, T.; Akob, D.M.; Jasrotia, P.; Jardine, P.M.; Watson, D.B.; Brown, S.D.; Palumbo, A.V.; Kostka, J.E. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl. Environ. Microbiol. 2010, 76, 3244-3254. [Google Scholar] [CrossRef] [PubMed]
47. Munasinghe, P.S.; Madden, M.E.E.; Brooks, S.C.; Elwood Madden, A.S. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution. Appl. Geochem. 2015, 58, 147-160. [Google Scholar] [CrossRef]
48. Wellman, D.M.; McNamara, B.K.; Bacon, D.H.; Cordova, E.A.; Ermi, R.M.; Top, L.M. Dissolution kinetics of meta-torbernite under circum-neutral to alkaline conditions. Environ. Chem. 2009, 6, 551-560. [Google Scholar] [CrossRef]
49. Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions. Geomicrobiol. J. 2011, 28, 444-456. [Google Scholar] [CrossRef]
50. Stetten, L.; Lefebvre, P.; Le Pape, P.; Mangeret, A.; Blanchart, P.; Merrot, P.; Brest, J.; Julien, A.; Bargar, J.R.; Cazala, C.; et al. Experimental redox transformations of uranium phosphate minerals and mononuclear species in a contaminated wetland. J. Hazard. Mater. 2020, 384, 121362. [Google Scholar] [CrossRef]
51. Reerburgh, W.S. A major sink and flux control for methane in marine sediments: Anaerobic consumption. In The Dynamic Environment of the Ocean Floor; Fanning, K.A., Manheim, R.T., Eds.; Lexington Books: Lexington, KY, USA, 1982; pp. 203-218. [Google Scholar]
52. Strakhovenko, V.D.; Gaskova, O.L. Thermodynamic model of formation of carbonates and uranium mineral phases in lakes Namshi-Nur and Tsagan-Tyrm (Cisbaikalia). Russ. Geol. Geophys. 2018, 59, 374-385. [Google Scholar] [CrossRef]
53. Dullies, F.; Lutze, W.; Gong, W.L.; Nuttall, H.E. Biological reduction of uranium—from the laboratory to the field. Sci. Total Environ. 2010, 408, 6260-6271. [Google Scholar] [CrossRef] [PubMed]
54. Mehta, V.S.; Mailot, F.; Wang, Z.; Catalano, J.G.; Giammar, D.E. Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Water Res. 2015, 69, 307-317. [Google Scholar] [CrossRef]
55. Qafoku, N.P.; Kukkadapu, R.K.; McKinley, J.P.; Arey, B.W.; Kelly, S.D.; Wang, C.; Resch, C.T.; Long, P.E. Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment. Environ. Sci. Technol. 2009, 43, 8528-8534. [Google Scholar] [CrossRef] [PubMed]
56. Bopp, I.V.; Charles, J.; Lundstrom, C.C.; Johnson, T.M.; Sandford, R.A.; Long, P.E.; Williams, K.H. Uranium 238U/235U isotope ratios as indicators of reduction: Results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A. Environ. Sci. Technol. 2010, 44, 5927-5933. [Google Scholar] [CrossRef] [PubMed]
57. Ohan, J.A.; Saneiyan, S.; Lee, J.; Bartlow, A.W.; Ntarlagiannis, D.; Burns, S.E.; Colwell, F.S. Microbial and geochemical dynamics of an aquifer stimulated for microbial induced calcite precipitation (MICP). Front. Microbiol. 2020, 11, 1327. [Google Scholar] [CrossRef]
58. Xu, J.; Veeramani, H.; Qafoku, N.P.; Singh, G.; Riquelme, M.V.; Pruden, A.; Kukkadapu, R.K.; Gartman, B.N.; Hochella, M.F., Jr. Efficacy of acetate-amended biostimulation for uranium sequestration: Combined analysis of sediment/groundwater geochemistry and bacterial community structure. Appl. Geochem. 2017, 78, 172-185. [Google Scholar] [CrossRef]
59. Moon, H.S.; McGuinness, L.; Kukkadapu, R.K.; Peacock, A.D.; Komlos, J.; Kerkhof, L.J.; Long, P.E.; Jaffe, P.R. Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics. Water Res. 2010, 44, 4015-4028. [Google Scholar] [CrossRef] [PubMed]
60. Veeramani, H.; Scheinost, A.C.; Monsegue, N.; Qafoku, N.P.; Kukkadapu, R.K.; Newville, M.; Lanzirotti, A.; Pruden, A.; Murayama, M.; Hochella, M.F., Jr. Abiotic reductive immobilization of U(VI) by biogenic mackinawite. Environ. Sci. Technol. 2013, 47, 2361-2369. [Google Scholar] [CrossRef]
61. Hyun, S.P.; Davis, J.A.; Sun, K.; Hayes, K.F. Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ. Sci. Technol. 2012, 46, 3369-3376. [Google Scholar] [CrossRef]
62. Bi, Y.; Hayes, K.F. Nano-FeS inhibits UO2 reoxidation under varied oxic conditions. Environ. Sci. Technol. 2014, 48, 632-640. [Google Scholar] [CrossRef]
63. Chan, C.S.; Fakra, S.C.; Edwards, D.C.; Emerson, D.; Banfield, J.F. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim. Cosmochim. Acta 2009, 73, 3807-3818. [Google Scholar] [CrossRef]
64. Chan, C.S.; de Stasio, G.; Welch, S.A.; Girasole, M.; Frazer, B.H. Microbial polysaccharides template assembly of nanocrystal fibers. Science 2004, 303, 1656-1658. [Google Scholar] [CrossRef]
65. Dynes, J.J.; Tyliszczak, T.; Araki, T.; Lawrence, J.R.; Swerhone, G.D.W.; Leppard, G.G.; Hitchcock, A.P. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 2006, 40, 1556-1565. [Google Scholar] [CrossRef] [PubMed]
|