Инд. авторы: Barlow A., Paijmans J.L.A., Alberti F., Gasparyan B., Bar-Oz G., Pinhasi R., Foronova I.V., Puzachenko A.Y., Pacher M., Dalen L., Baryshnikov G., Hofreiter M.
Заглавие: Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears
Библ. ссылка: Barlow A., Paijmans J.L.A., Alberti F., Gasparyan B., Bar-Oz G., Pinhasi R., Foronova I.V., Puzachenko A.Y., Pacher M., Dalen L., Baryshnikov G., Hofreiter M. Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears // CURRENT BIOLOGY. - 2021. - Vol.31. - Iss. 8. - P.1771-+. - ISSN 0960-9822.
Внешние системы: DOI: 10.1016/j.cub.2021.01.073; РИНЦ: 46746699; PubMed: 33592193; WoS: 000644724700007;
Реферат: eng: Palaeogenomes provide the potential to study evolutionary processes in real time, but this potential is limited by our ability to recover genetic data over extended timescales.1 As a consequence, most studies so far have focused on samples of Late Pleistocene or Holocene age, which covers only a small part of the history of many clades and species. Here, we report the recovery of a low coverage palaeogenome from the petrous bone of a 360,000 year old cave bear from Kudaro 1 cave in the Caucasus Mountains. Analysis of this genome alongside those of several Late Pleistocene cave bears reveals widespread mito-nuclear discordance in this group. Using the time interval between Middle and Late Pleistocene cave bear genomes, we directly estimate ursid nuclear and mitochondrial substitution rates to calibrate their respective phylogenies. This reveals postdivergence mitochondrial transfer as the dominant factor explaining their mito-nuclear discordance. Interestingly, these transfer events were not accompanied by large-scale nuclear introgression. However, we do detect additional instances of nuclear admixture among other cave bear lineages, and between cave bears and brown bears, which are not associated with mitochondrial exchange. Genomic data obtained from the Middle Pleistocene cave bear petrous bone has thus facilitated a revised evolutionary history of this extinct megafaunal group. Moreover, it suggests that petrous bones may provide a means of extending both the magnitude and time depth of palaeogenome retrieval over substantial portions of the evolutionary histories of many mammalian clades.
Ключевые слова: CARNIVORA; DIVERSITY; DIVERGENCE; REVEALS; ANCIENT; BROWN BEAR; CHEEK TEETH; MITOCHONDRIAL-DNA; SEQUENCE; MUTATION-RATE;
Издано: 2021
Физ. характеристика: с.1771
Цитирование: 1. Hofreiter, M., Paijmans, J.L.A., Goodchild, H., Speller, C.F., Barlow, A., Fortes, G.G., Thomas, J.A., Ludwig, A., Collins, M.J., The future of ancient DNA: Technical advances and conceptual shifts. BioEssays 37 (2015), 284–293. 2. Cohen, K., Finney, S., Gibbard, P.L., Fan, J.-X., The ICS International Chronostratigraphic Chart (updated). Episodes 36 (2020), 199–204. 3. Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S., Karpinski, E., Ivancevic, A.M., To, T.-H., Kortschak, R.D., et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. USA 115 (2018), E2566–E2574. 4. Meyer, M., Palkopoulou, E., Baleka, S., Stiller, M., Penkman, K.E.H., Alt, K.W., Ishida, Y., Mania, D., Mallick, S., Meijer, T., et al. Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. eLife 6 (2017), 1–14. 5. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., de Filippo, C., et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505 (2014), 43–49. 6. Dabney, J., Knapp, M., Glocke, I., Gansauge, M.-T., Weihmann, A., Nickel, B., Valdiosera, C., García, N., Pääbo, S., Arsuaga, J.-L., Meyer, M., Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110 (2013), 15758–15763. 7. Meyer, M., Fu, Q., Aximu-Petri, A., Glocke, I., Nickel, B., Arsuaga, J.-L., Martínez, I., Gracia, A., de Castro, J.M., Carbonell, E., Pääbo, S., A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505 (2014), 403–406. 8. Meyer, M., Arsuaga, J.-L., de Filippo, C., Nagel, S., Aximu-Petri, A., Nickel, B., Martínez, I., Gracia, A., Bermúdez de Castro, J.M., Carbonell, E., et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531 (2016), 504–507. 9. Gamba, C., Jones, E.R., Teasdale, M.D., McLaughlin, R.L., Gonzalez-Fortes, G., Mattiangeli, V., Domboróczki, L., Kővári, I., Pap, I., Anders, A., et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun., 5, 2014, 5257. 10. Barlow, A., Cahill, J.A., Hartmann, S., Theunert, C., Xenikoudakis, G., Fortes, G.G., Paijmans, J.L.A., Rabeder, G., Frischauf, C., Grandal-d'Anglade, A., et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2 (2018), 1563–1570. 11. Barlow, A., Hartmann, S., Gonzalez, J., Hofreiter, M., Paijmans, J.L.A., Consensify: A method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates. Genes (Basel), 11, 2020, 11. 12. Lioubine, V.P., The Acheulian Epoch in the Caucasus. 1998, In Russian, St. Petersburg. 13. Baryshnikov, G.F., Cave bears from the Paleolithic of the Greater Caucasus. Illinois State Mus. Sci. Pap. XXVII (1998), 69–118. 14. Baryshnikov, G.F., Puzachenko, A.Y., Evolution and morphological variability of cheek teeth in the Kudaro cave bear (Ursus kudarensis, Carnivora, Ursidae). Zool. Zh. 98 (2019), 1112–1136. 15. Stiller, M., Molak, M., Prost, S., Rabeder, G., Baryshnikov, G., Rosendahl, W., Münzel, S., Bocherens, H., Grandal-d'Anglade, A., Hilpert, B., et al. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quat. Int. 339–340 (2014), 224–231. 16. Barlow, A., Hofreiter, M., Knapp, M., Cave bears and ancient DNA: a mutually beneficial relationship. Nagel, D., Kavcik-Graumann, N., (eds.) Berichte der Geologischen Bundesanstalt, 2019, Geologische Bundesanstalt, 33–45. 17. Cahill, J.A., Green, R.E., Fulton, T.L., Stiller, M., Jay, F., Ovsyanikov, N., Salamzade, R., St John, J., Stirling, I., Slatkin, M., Shapiro, B., Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet., 9, 2013, e1003345. 18. Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M.A., Janke, A., The evolutionary history of bears is characterized by gene flow across species. Sci. Rep., 7, 2017, 46487. 19. Baryshnikov, G.F., Puzachenko, A.Y., Craniometrical variability in the cave bears (Carnivora, Ursidae): Multivariate comparative analysis. Quat. Int. 245 (2011), 350–368. 20. Baryshnikov, G.F., Puzachenko, A.Y., Morphometry of upper cheek teeth of cave bears (Carnivora, Ursidae). Boreas 48 (2019), 581–604. 21. Kurtén, B., The cave bear story. Life and death of a vanished animal. 1976, Columbia University Press. 22. Skoglund, P., Ersmark, E., Palkopoulou, E., Dalén, L., Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25 (2015), 1515–1519. 23. Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T., Schierup, M.H., Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat. Ecol. Evol. 3 (2019), 286–292. 24. Scally, A., The mutation rate in human evolution and demographic inference. Curr. Opin. Genet. Dev. 41 (2016), 36–43. 25. Cronin, M.A., Amstrup, S.C., Talbot, S.L., Sage, G.K., Amstrup, K.S., Genetic variation, relatedness, and effective population size of polar bears (Ursus maritimus) in the southern Beaufort Sea, Alaska. J. Hered. 100 (2009), 681–690. 26. De Barba, M., Waits, L.P., Garton, E.O., Genovesi, P., Randi, E., Mustoni, A., Groff, C., The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol. Ecol. 19 (2010), 3938–3951. 27. Eyre-Walker, A., Keightley, P.D., High genomic deleterious mutation rates in hominids. Nature 397 (1999), 344–347. 28. Nachman, M.W., Crowell, S.L., Estimate of the mutation rate per nucleotide in humans. Genetics 156 (2000), 297–304. 29. Allio, R., Donega, S., Galtier, N., Nabholz, B., Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34 (2017), 2762–2772. 30. Rieux, A., Eriksson, A., Li, M., Sobkowiak, B., Weinert, L.A., Warmuth, V., Ruiz-Linares, A., Manica, A., Balloux, F., Improved calibration of the human mitochondrial clock using ancient genomes. Mol. Biol. Evol. 31 (2014), 2780–2792. 31. Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., Roy, M., The Middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25 (2006), 3150–3184. 32. Gretzinger, J., Molak, M., Reiter, E., Pfrengle, S., Urban, C., Neukamm, J., Blant, M., Conard, N.J., Cupillard, C., Dimitrijević, V., et al. Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Sci. Rep., 9, 2019, 10700. 33. Petit, R.J., Excoffier, L., Gene flow and species delimitation. Trends Ecol. Evol. 24 (2009), 386–393. 34. Konishi, M., Takata, K., Impact of asymmetrical hybridization followed by sterile F 1 hybrids on species replacement in Pseudorasbora. Conserv. Genet. 5 (2004), 463–474. 35. Gansauge, M.-T., Meyer, M., Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8 (2013), 737–748. 36. Paijmans, J.L.A., Baleka, S., Henneberger, K., Taron, U.H., Trinks, A., Westbury, M.V., Barlow, A., Sequencing single-stranded libraries on the Illumina NextSeq 500 platform. arXiv, 2017, 1–5. 37. Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17, 2011, 10. 38. Magoč, T., Salzberg, S.L., FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27 (2011), 2957–2963. 39. Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 (2009), 1754–1760. 40. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 (2009), 2078–2079. 41. Ginolhac, A., Rasmussen, M., Gilbert, M.T.P., Willerslev, E., Orlando, L., mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27 (2011), 2153–2155. 42. Korneliussen, T.S., Albrechtsen, A., Nielsen, R., Open Access ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15 (2014), 1–13. 43. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 (2014), 1312–1313. 44. R Core Team. R: A language and environment for statistical computing. 2014, R Found. Stat. Comput. Available at http://www.r-project.org/. 45. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35 (2018), 1547–1549. 46. Lioubine, V.P., Kulikov, O., About the age of the most ancient Paleolithic sites of the Caucasus. Sov. Archaeol. 4 (1991), 4–6. 47. Lioubine, V.P., L'acheuléen du Caucase. 2002, Université de Liège, Service de Prehistoire. 48. Nesmeyanov, S.A., Geomorphological aspects of Paleolithic paleoecology of the Western Caucasus. 1999, Nauchniy Mir [In Russian]. 49. Baryshnikov, G.F., Local biochronology of Middle and Late Pleistocene mammals from the Caucasus. Russ. J. Theriology 1 (2002), 61–67. 50. Guérin, C., Baryshnikov, G.F., Le rhinocéros acheuléen de la grotte de Koudaro I(Géorgie, URSS) et le problème des espèces relictes du Pléistocène du Caucase. Geobios 20 (1987), 389–396. 51. Barlow, A., Fortes, G.M.G., Dalen, L., Pinhasi, R., Gasparyan, B., Rabeder, G., Frischchauf, C., Paijmans, J.L.A., Hofreiter, M., Massive influence of DNA isolation and library preparation approaches on palaeogenomic sequencing data. bioRxiv, 2016, 075911. 52. Pinhasi, R., Fernandes, D., Sirak, K., Novak, M., Connell, S., Alpaslan-Roodenberg, S., Gerritsen, F., Moiseyev, V., Gromov, A., Raczky, P., et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE, 10, 2015, e0129102. 53. Basler, N., Xenikoudakis, G., Westbury, M.V., Song, L., Sheng, G., Barlow, A., Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone. BMC Res. Notes, 10, 2017, 754. 54. Li, B., Zhang, G., Willerslev, E., Wang, J., Genomic data from the Polar Bear (Ursus maritimus). Gigascience, 157, 2011, 10.5524/100008. 55. Hu, Y., Wu, Q., Ma, S., Ma, T., Shan, L., Wang, X., Nie, Y., Ning, Z., Yan, L., Xiu, Y., Wei, F., Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc. Natl. Acad. Sci. USA 114 (2017), 1081–1086. 56. Krause, J., Unger, T., Noçon, A., Malaspinas, A.-S., Kolokotronis, S.-O., Stiller, M., Soibelzon, L., Spriggs, H., Dear, P.H., Briggs, A.W., et al. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol. Biol., 8, 2008, 220. 57. Abella, J., Alba, D.M., Robles, J.M., Valenciano, A., Rotgers, C., Carmona, R., Montoya, P., Morales, J., Kretzoiarctos gen. nov., the oldest member of the giant panda clade. PLoS ONE, 7, 2012, e48985. 58. Sheng, G.-L., Basler, N., Ji, X.-P., Paijmans, J.L.A., Alberti, F., Preick, M., Hartmann, S., Westbury, M.V., Yuan, J.-X., Jablonski, N.G., et al. Paleogenome reveals genetic contribution of extinct giant panda to extant populations. Curr. Biol. 29 (2019), 1695–1700.e6. 59. Günther, T., Nettelblad, C., The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS Genet., 15, 2019, e1008302. 60. Fortes, G.G., Grandal-d'Anglade, A., Kolbe, B., Fernandes, D., Meleg, I.N., García-Vázquez, A., Pinto-Llona, A.C., Constantin, S., de Torres, T.J., Ortiz, J.E., et al. Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Mol. Ecol. 25 (2016), 4907–4918. 61. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (2004), 1792–1797. 62. Rustioni, M., Mazza, P., The genus Ursus in Eurasia: Dispersal events and stratigraphical significance. Riv. Ital. di Paleontol. e Stratigr., 98, 1992. 63. Rabeder, G., Pacher, M., Withalm, G., Early Pleistocene bear remains from Deutsch-Altenburg (lower Austria). Geol. Carpath., 61, 2010, 192. 64. Sala, B., Masini, F., Late Pliocene and Pleistocene small mammal chronology in the Italian peninsula. Quat. Int. 160 (2007), 4–16. 65. van Heteren, A.H., Arlegi, M., Santos, E., Arsuaga, J.L., Gómez-Olivencia, A., Cranial and mandibular morphology of Middle Pleistocene cave bears (Ursus deningeri): implications for diet and evolution. Hist. Biol. 31 (2019), 485–499. 66. Sheng, G.L., Barlow, A., Cooper, A., Hou, X.D., Ji, X.P., Jablonski, N.G., Zhong, B.J., Liu, H., Flynn, L.J., Yuan, J.X., et al. Ancient DNA from giant panda (Ailuropoda melanoleuca) of south-western China reveals genetic diversity loss during the Holocene. Genes (Basel), 9, 2018, 9. 67. Loreille, O., Orlando, L., Patou-Mathis, M., Philippe, M., Taberlet, P., Hänni, C., Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Curr. Biol. 11 (2001), 200–203.