Инд. авторы: Perchuk A.L., Sapegina A.V., Safonov O.G., Yapaskurt V.O., Shatsky V.S., Malkovets V.G.
Заглавие: Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia
Библ. ссылка: Perchuk A.L., Sapegina A.V., Safonov O.G., Yapaskurt V.O., Shatsky V.S., Malkovets V.G. Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia // Precambrian Research. - 2021. - Vol.357. - Art.106122. - ISSN 0301-9268.
Внешние системы: DOI: 10.1016/j.precamres.2021.106122; РИНЦ: 46778943; WoS: 000652097000005;
Реферат: eng: It is widely accepted that granulite xenoliths from kimberlites provide a record of granulite facies metamorphism at the basement of cratons worldwide. However, application of the phase equilibria modeling for seven representative samples of mafic granulites from xenoliths of the Udachnaya kimberlite pipe, Yakutia, revealed that a granulitic garnet + clinopyroxene + plagioclase +/- orthopyroxene +/- amphibole +/- scapolite mineral assemblage was likely formed in the middle crust under amphibolite facies conditions (600-650 degrees C and 0.8-1.0 GPa) in a deficiency of fluid. Clinopyroxene in the rocks is characterized by elevated aegirine content (up to 10 mol.%) both in the earlier magmatic cores and in the later metamorphic rim zones of the grains. Nevertheless, the phase equilibrium modeling for all samples indicates surprisingly reduced conditions, i.e. oxygen fugacity 1.6-3.3 log units below the FMQ (Fayalite-Magnetite-Quartz) buffer. In contrast, the coexistence of Fe-Ti oxides indicates temperatures of 850-990 degrees C and oxygen fugacity about lg(FMQ) +/- 0.5, conditions which correspond to earlier stages of rock evolution. Reduction of oxygen fugacity during cooling is discussed in the context of the evolution of a complex fluid. The reconstructed P-T conditions for the final equilibration in the mafic granulites indicate that temperatures were similar to 250 degrees C higher than those extrapolated from the continental conductive geotherm of 35-40 mu W/m(2) deduced from peridotite xenoliths of the Udachnaya pipe. Although the granulites resided in the crust for a period for at least 1.4 Ga, they did not re-equilibrate to the temperatures of the geotherm, likely due to the blocking of mineral reactions under relatively low temperatures and fluid-deficient conditions
Ключевые слова: EVOLUTION; METAMORPHISM; GARNET; REDOX STATE; BAMBLE SECTOR; OXYGEN BAROMETRY; PERIDOTITE XENOLITHS; LITHOSPHERIC MANTLE; P-T-f(O2) conditions; Reduced conditions; The Udachnaya pipe; Siberian craton; Mafic granulite xenoliths; ORTHO-PYROXENE; FE;
Издано: 2021
Физ. характеристика: 106122
Цитирование: 1. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S., Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160 (2013), 201–215, 10.1016/j.lithos.2012.11.014. 2. Ai, Y., A revision of the garnet-clinopyroxene Fe 2+-Mg exchange geothermometer. Contrib. Miner. Petrol. 115:4 (1994), 467–473, 10.1007/BF00320979. 3. Anderson, A.T., Lindsley, D.H., Model for the Ti magnetite or ilmenite geothermometers and oxygen barometers. Trans. Geophysical Union, 66, 1985, 416. 4. Anderson, A.T., Wright, T.L., Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea volcano, Hawaii. Am. Mineral. 57:1–2 (1972), 188–216. 5. Anhaeusser, C.R., Precambrian tectonic environments. Annu. Rev. Earth Planet. Sci. 3:1 (1975), 31–53. 6. Aranovich, L.Y., Newton, R.C., H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium. Contrib. Miner. Petrol. 127:3 (1997), 261–271, 10.1007/s004100050279. 7. Arndt, N.T., The formation and evolution of the continental crust. Geochem. Perspect., 2(3), 2013, 405. 8. Ashworth, J.R., Sheplev, V.S., Bryxina, N.A., Kolobov, V.Y., Reverdatto, V.V., Diffusion-controlled corona reaction and overstepping of equilibrium in a garnet granulite, Yenisey Ridge, Siberia. J. Metamorphic Geol. 16:2 (1998), 231–246, 10.1111/j.1525-1314.1998.00134.x. 9. Austrheim, H., Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet. Sci. Lett. 81 (1987), 221–232, 10.1016/0012-821X(87)90158-0. 10. Berg, J.H., Dry granulite mineral assemblages in the contact aureoles of the Nain Complex, Labrador. Contrib. Mineral. Petrol. 64:1 (1977), 33–52, 10.1007/BF00375284. 11. Bohlen, S.R., Essene, E.J., Feldspar and oxide thermometry of granulites in the Adirondack Highlands. Contrib. Miner. Petrol. 62:2 (1977), 153–169, 10.1007/BF00372874. 12. Bohlen, S.R., Mezger, K., Origin of granulite terranes and the formation of the lowermost continental crust. Science 244:4902 (1989), 326–329, 10.1126/science.244.4902.326. 13. Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., Finger, L.W., Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Miner. Petrol. 128:2–3 (1997), 228–246, 10.1007/s004100050305. 14. Brandelik, A., CALCMIN–an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Comput. Geosci. 35:7 (2009), 1540–1551, 10.1016/j.cageo.2008.09.011. 15. Brown, M., Johnson, T., Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 103:2 (2018), 181–196, 10.2138/am-2018-6166. 16. Campanaro, B.P., Jenkins, D.M., An experimental study of chlorine incorporation in amphibole synthesized along the pargasite–ferro-pargasite join. Canad. Mineral. 55:3 (2017), 419–436, 10.3749/canmin.1600082. 17. Carmichael, I.S., The redox states of basic and silicic magmas: a reflection of their source regions?. Contrib. Miner. Petrol. 106:2 (1991), 129–141, 10.1007/BF00306429. 18. Carmichael, I.S., Ghiorso, M.S., Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth Planet. Sci. Lett. 78:2–3 (1986), 200–210, 10.1016/0012-821X(86)90061-0. 19. Cawood, P.A., Hawkesworth, C.J., Dhuime, B., The continental record and the generation of continental crust. Bulletin 125:1–2 (2013), 14–32, 10.1130/B30722.1. 20. Cherepanova, Y., Artemieva, I.M., Thybo, H., Chemia, Z., Crustal structure of the Siberian craton and the West Siberian basin: an appraisal of existing seismic data. Tectonophysics 609 (2013), 154–183, 10.1016/j.tecto.2013.05.004. 21. Condie, K. C., Abbott, D. H., 1999. Oceanic plateaus and hotspot islands: identification and role in continental growth. 22. Connolly, J.A.D., Cesare, B., C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. J. Metamorph. Geol. 11:3 (1993), 379–388, 10.1111/j.1525-1314.1993.tb00155.x. 23. Connolly, J.A., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236:1–2 (2005), 524–541, 10.1016/j.epsl.2005.04.033. 24. Dawson, J.B., Smith, J.V., Reduced sapphirine granulite xenoliths from the Lace Kimberlite, South Africa; implications for the deep structure of the Kaapvaal Craton. Contrib. Miner. Petrol. 95:3 (1987), 376–383, 10.1007/BF00371851. 25. Doucet, L.S., Peslier, A.H., Ionov, D.A., Brandon, A.D., Golovin, A.V., Goncharov, A.G., Ashchepkov, I.V., High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137 (2014), 159–187, 10.1016/j.gca.2014.04.011. 26. Ellis, D.J., Green, D.H., An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Miner. Petrol. 71:1 (1979), 13–22, 10.1007/BF00371878. 27. Fedortchouk, Y., Canil, D., Carlson, J.A., Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib. Miner. Petrol. 150 (2005), 54–69, 10.1007/s00410-005-0003-1. 28. Fettes, D., Desmons, J. (Ed.), 2007. Metamorphic rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. – 244 S., Cambridge 2007, Cambridge University Press. 29. François, C., Philippot, P., Rey, P., Rubatto, D., Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane. Earth Planet. Sci. Lett. 396 (2014), 235–251, 10.1016/j.epsl.2014.04.025. 30. Fuhrman, M.L., Lindsley, D.H., Ternary-feldspar modeling and thermometry. American mineralogist 73:3–4 (1988), 201–215. 31. Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ling, W.L., Ayers Jh., Wang C.H. Wang, Q. H., 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019), 892-897. 10.1038/nature03162. 32. Goncharov, A.G., Ionov, D.A., Redox state of deep off-craton lithospheric mantle: new data from garnet and spinel peridotites from Vitim, southern Siberia. Contrib. Miner. Petrol. 164:5 (2012), 731–745. 33. Goncharov, A.G., Ionov, D.A., Doucet, L.S., Pokhilenko, L.N., Thermal state, oxygen fugacity and COH fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357 (2012), 99–110, 10.1016/j.epsl.2012.09.016. 34. Green, E.C.R., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34:9 (2016), 845–869, 10.1111/jmg.12211. 35. Griffin, W.L., Heier, K.S., Petrological implications of some corona structures. Lithos 6:4 (1973), 315–335, 10.1016/0024-4937(73)90051-0. 36. Griffin, W.L., O'Reilly, S.Y, Abe, N. Aulbach, S., Davies, R.M., Pearson, N.J., Doyle, B.J., Kivi, K., 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 127, 19–41. 37. Hammerli, J., Kemp, A. I., Barrett, N., Wing, B. A., Roberts, M., Arculus, R. J., Pierre B., Nude P.M. Rankenburg, K., 2017. Sulfur isotope signatures in the lower crust: a SIMS study on S-rich scapolite of granulites. Chemical Geology, 454, 54-66. 10.1016/j.chemgeo.2017.02.016. 38. Hammond, P.A., Taylor, L.A., The ilmenite titano-magnetite assemblage-kinetics of reequilibration. Earth Planet. Sci. Lett. 61 (1982), 143–150. 39. Harley, S.L., An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib. Miner. Petrol. 86:4 (1984), 359–373, 10.1007/BF01187140. 40. Harlov, D.E., Comparative oxygen barometry in granulites, Bamble Sector. SE Norway. The Journal of Geology 100:4 (1992), 447–464. 41. Harlov, D.E., Titaniferous magnetite–ilmenite thermometry and titaniferous magnetite–ilmenite–orthopyroxene–quartz oxygen barometry in granulite facies gneisses, Bamble Sector, SE Norway: implications for the role of high-grade CO2-rich fluids during granulite genesis. Contrib. Miner. Petrol. 139:2 (2000), 180–197, 10.1007/PL00007670. 42. Holland, T.J.B., The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes. Contrib. Miner. Petrol. 82:2–3 (1983), 214–220, 10.1007/BF01166616. 43. Holland, T., Powell, R., Thermodynamics of order-disorder in minerals; II, Symmetric formalism applied to solid solutions. Am. Mineral. 81:11–12 (1996), 1425–1437, 10.2138/am-1996-11-1215. 44. Holland, T.J.B., Powell, R.T.J.B., An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16:3 (1998), 309–343, 10.1111/j.1525-1314.1998.00140.x. 45. Ionov, D.A., Doucet, L.S., Carlson, R.W., Golovin, A.V., Korsakov, A.V., Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochim. Cosmochim. Acta 165 (2015), 466–483. 46. Jenkins, D.M., The incorporation of chlorine into calcium amphibole. Am. Mineral. 104:4 (2019), 514–524, 10.2138/am-2019-6768. 47. Jennings, E.S., Holland, T.J., A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56:5 (2015), 869–892, 10.1093/petrology/egv020. 48. Johnson, T.E., Brown, M., Goodenough, K.M., Clark, C., Kinny, P.D., White, R.W., Subduction or sagduction: ambiguity in constraining the origin of ultramaficmafic bodies in the Archean crust of NW Scotland. Precambr. Res. 283 (2016), 89–105. 49. Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Faure, K., Golovin, A.V., Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia. Chem. Geol. 237:3–4 (2007), 384–400, 10.1016/j.chemgeo.2006.07.010. 50. Keller, L.M., Wirth, R., Rhede, D., Kunze, K., Abart, R., Asymmetrically zoned reaction rims: assessment of grain boundary diffusivities and growth rates related to natural diffusion-controlled mineral reactions. J. Metamorph. Geol. 26:1 (2008), 99–120, 10.1111/j.1525-1314.2007.00747.x. 51. Kelley, K.A., Cottrell, E., The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet. Sci. Lett. 329 (2012), 109–121, 10.1016/j.epsl.2012.02.010. 52. Kinny, P.D., Griffin, B., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol Geofiz 38 (1997), 91–99. 53. Koreshkova, M.Y., Downes, H., Nikitina, L.P., Vladykin, N.V., Larionov, A.N., Sergeev, S.A., Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambr. Res. 168:3–4 (2009), 197–212, 10.1016/j.precamres.2008.09.007. 54. Koreshkova, M.Y., Downes, H., Levsky, L.K., Vladykin, N.V., Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia. J. Petrol. 52:10 (2011), 1857–1885, 10.1093/petrology/egr033. 55. Kunz, B.E., White, R.W., Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy). J. Metamorph. Geol. 37:7 (2019), 935–950, 10.1111/jmg.12478. 56. Lamb, W., Valley, J.W., Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312:5989 (1984), 56–58, 10.1038/312056a0. 57. Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D., Linthout, K., Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral. Mag. 61:405 (1997), 295–310. 58. Lepage, L.D., ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput. Geosci. 29:5 (2003), 673–678. 59. Lindsley, D.H., Pyroxene thermometry. Am. Mineral. 68:5–6 (1983), 477–493. 60. Liu, Y., Taylor, L.A., Sarbadhikari, A.B., Valley, J.W., Ushikubo, T., Spicuzza, M.J., Sobolev, N.V., Metasomatic origin of diamonds in the world's largest diamondiferous eclogite. Lithos 112 (2009), 1014–1024, 10.1016/j.lithos.2009.06.036. 61. Manning, C.E., Aranovich, L.Y., Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects. Precambr. Res. 253 (2014), 6–16, 10.1016/j.precamres.2014.06.025. 62. McLelland, J.M., Whitney, P.R., Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York. Contrib. Miner. Petrol. 73:3 (1980), 243–251, 10.1007/BF00381443. 63. Moecher, D.P., Essene, E.J., Anovitz, L.M., Calculation and application of clinopyroxene-garnet-plagioclase-quartz geobarometers. Contrib. Miner. Petrol. 100:1 (1988), 92–106, 10.1007/BF00399441. 64. Morimoto, N., Nomenclature of pyroxenes. Mineral. Petrol. 39:1 (1988), 55–76, 10.1007/BF01226262. 65. Moyen, J.F., Martin, H., Forty years of TTG research. Lithos 148 (2012), 312–336, 10.1016/j.lithos.2012.06.010. 66. Moyen, J.F., Paquette, J.L., Ionov, D.A., Gannoun, A., Korsakov, A.V., Golovin, A.V., Moine, B.N., Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton. Earth Planet. Sci. Lett. 457 (2017), 149–159, 10.1016/j.epsl.2016.09.046. 67. Müller, T., Dohmen, R., Becker, H.W., Ter Heege, J.H., Chakraborty, S., Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib. Miner. Petrol. 166:6 (2013), 1563–1576, 10.1007/s00410-013-0941-y. 68. Newton, R.C., Perkins, D.I.I.I., Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. Am. Mineral. 67:3–4 (1982), 203–222. 69. Pearson, N.J., O'Reilly, S.Y., Griffin, W.L., The crust-mantle boundary beneath cratons and craton margins: a transect across the south-west margin of the Kaapvaal craton. Lithos 36:3–4 (1995), 257–287, 10.1016/0024-4937(95)00021-6. 70. Perchuk, A.L., Burchard, M., Schertl, H.P., Maresch, W.V., Gerya, T.V., Bernhardt, H.J., Vidal, O., Diffusion of divalent cations in garnet: multi-couple experiments. Contrib. Miner. Petrol., 157(5), 2009, 573, 10.1007/s00410-008-0353-6. 71. Perchuk, A.L., Morgunova, A.A., Variable P-T paths and HP-UHP metamorphism in a Precambrian terrane, Gridino, Russia: petrological evidence and geodynamic implications. Gondwana Res. 25:2 (2014), 614–629, 10.1016/j.gr.2012.09.009. 72. Perchuk, A.L., Safonov, O.G., Smit, C.A., van Reenen, D.D., Zakharov, V.S., Gerya, T.V., Precambrian ultra-hot orogenic factory: making and reworking of continental crust. Tectonophysics 746 (2018), 572–586, 10.1016/j.tecto.2016.11.041. 73. Perchuk, L.L., Gerya, T.V., van Reenen, D.D., Kramers, J.D., McCourt, S., Formation and evolution of Precambrian granulite terranes: a gravitational redistribution model. Geol. Soc. Am. Memoirs 207 (2011), 289–310, 10.1130/2011.1207(15). 74. Pisarevsky, S.A., Natapov, L.M., Donskaya, T.V., Gladkochub, D.P., Vernikovsky, V.A., Proterozoic Siberia: a promontory of Rodinia. Precambr. Res. 160:1–2 (2008), 66–76, 10.1016/j.precamres.2007.04.016. 75. Powell, R., Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J. Metamorph. Geol. 3:3 (1985), 231–243, 10.1111/j.1525-1314.1985.tb00319.x. 76. Powell, R., Holland, T.J.B.H., Worley, B., Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J. Metamorph. Geol. 16:4 (1998), 577–588, 10.1111/j.1525-1314.1998.00157.x. 77. Ravna, K., The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J. Metamorph. Geol. 18:2 (2000), 211–219, 10.1046/j.1525-1314.2000.00247.x. 78. Redhummer, G.J., Amthauer, G., Lottermoser, W., Treutmann, W., Synthesis and structural properties of clinopyroxenes of the hedenbergite CaFe2+Si2O6–aegirine NaFe3+Si2O6 solid-solution series. Eur. J. Mineral. 12:1 (2000), 105–120, 10.1127/0935-1221/2000/0012-0105. 79. Rozel, A.B., Golabek, G.J., Jain, C., Tackley, P.J., Gerya, T., Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545 (2017), 332–335, 10.1038/nature22042. 80. Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment. Develop. Precambr. Geol. 11 (1994), 411–459, 10.1016/S0166-2635(08)70228-7. 81. Rosen, O.M., The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37:3 (2003), 175–192. 82. Rosen, O.M., Levsky, L.K., Zhuravlev, D.Z., Rotman, A.Ya., Spetsius, Z.V., Makeev, A.F., Zinchuk, N.N., Manakov, A.V., Serenko, V.P., Palaeoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigr. Geol. Correl. 14 (2006), 581–601, 10.1134/S0869593806060013. 83. Rudnick, R.L., Xenoliths—samples of the lower continental crust. Continental lower crust 23 (1992), 269–316. 84. Rudnick, R.L., Making continental crust. Nature 378:6557 (1995), 571–578, 10.1038/378571a0. 85. Rudnick, R.L., Fountain, D.M., Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33:3 (1995), 267–309, 10.1029/95RG01302. 86. Schumacher, J.C., Appendix 2: the estimation of ferric iron in electron microprobe analysis of amphiboles. Mineral. Mag. 61:405 (1997), 312–321, 10.1017/S0026461X00011397. 87. Skippen, G.B., Marshall, D.D., The metamorphism of granulites and devolatilization of the lithosphere. Canad. Mineral. 29:4 (1991), 693–705. 88. Shatsky, V. S., Rudnick, R. L., Jagoutz, E., 1990. Mafic granulites from Udachnaya pipe, Yakutia: samples of Archaean lower crust. Deep seated magmatism and evolution of the lithosphere of Siberian Platform. Novosibirsk: Siberian Branch of the USSR Academy of Sciences, 45-46. 89. Shatsky, V.S., Buzlukova, L.V., Jagoutz, E., Koz'menko, O.A., Mityukhin, S.I., Structure and evolution of the lower crust of the Daldyn-Alakit district in the Yakutian Diamond Province (from data on xenoliths). Russ. Geol. Geophys. 46:12 (2005), 1252–1270. 90. Shatsky, V., Ragozin, A., Zedgenizov, D., Mityukhin, S., Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe. Lithos 105:3–4 (2008), 289–300, 10.1016/j.lithos.2008.04.008. 91. Shatsky, V.S., Malkovets, V.G., Belousova, E.A., Tretiakova, I.G., Griffin, W.L., Ragozin, A.L., O'Reilly, S.Y., Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U-Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambr. Res. 282 (2016), 1–20, 10.1016/j.precamres.2016.06.022. 92. Shatsky, V.S., Malkovets, V.G., Belousova, E.A., Tretiakova, I.G., Griffin, W.L., Ragozin, A.L., O'Reilly, S.Y., Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton). Precambr. Res. 305 (2018), 125–144, 10.1016/j.precamres.2017.11.017. 93. Shatsky, V. S., Wang, Q., Skuzovatov, S. Y., Ragozin, A. L., 2019. The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: Coupled or decoupled? Precambrian Research. Vol.332. - Art.105388. 94. Smith, C.M., Canil, D., Rowins, S.M., Friedman, R., Reduced granitic magmas in an arc setting: the Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc. Lithos 154 (2012), 361–373, 10.1016/j.lithos.2012.08.001. 95. Suvorov, V.D., Melnik, E.A., Thybo, H., Perchuc, E., Parasotka, B.S., Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite Field in Siberia. Tectonophysics 420 (2006), 49–73. 96. Thébaud, N., Rey, P.F., Archean gravity-driven tectonics on hot and flooded continents: controls on long-lived mineralised hydrothermal systems away from continental margins. Precambr. Res. 229 (2013), 93–104, 10.1016/j.precamres.2012.03.001. 97. Tretiakova, I.G., Belousova, E.A., Malkovets, V.G., Griffin, W.L., Piazolo, S., Pearson, N.J., Nishido, H., Recurrent magmatic activity on a lithosphere-scale structure: Crystallization and deformation in kimberlitic zircons. Gondwana Res. 42 (2017), 126–132, 10.1016/j.gr.2016.10.006. 98. Török, K., Dégi, J., Szép, A., Marosi, G., Reduced carbonic fluids in mafic granulite xenoliths from the Bakony-Balaton Highland Volcanic Field, W-Hungary. Chem. Geol. 223:1–3 (2005), 93–108, 10.1016/j.chemgeo.2005.05.010. 99. Valley, J.W., Bohlen, S.R., Essene, E.J., Lamb, W., Metamorphism in the Adirondacks: II. The role of fluids. J. Petrol. 31:3 (1990), 555–596, 10.1093/petrology/31.3.555. 100. Van Kranendonk, M.J., Archaean tectonics 2004: a review. Precambr. Res. 131:3–4 (2004), 143–151, 10.1016/j.precamres.2003.12.008. 101. Van Kranendonk, M.J., Two types of Archean continental crust: plume and plate tectonics on early Earth. Am. J. Sci. 310:10 (2010), 1187–1209, 10.2475/10.2010.01. 102. Volfinger, M., Robert, J.L., Vielzeuf, D., Neiva, A.M.R., Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim. Cosmochim. Acta 49:1 (1985), 37–48, 10.1016/0016-7037(85)90189-9. 103. Webster, J.D., Baker, D.R., Aiuppa, A., Halogens in mafic and intermediate-silica content magmas. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, 2018, Springer, Cham, 307–430, 10.1007/978-3-319-61667-4_6. 104. Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals. Am. Mineral. 95:1 (2010), 185–187, 10.2138/am.2010.3371. 105. Wood, B.J., Banno, S., Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol. 42:2 (1973), 109–124, 10.1007/BF00371501. 106. Yang, C., Wei, C., Two phases of granulite facies metamorphism during Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: records from mafic granulites. Precambr. Res. 301 (2017), 49–64, 10.1016/j.precamres.2017.09.005.