Цитирование: | 1. Abersteiner, A., Kamenetsky, V.S., Golovin, A.V., Kamenetsky, M., Goemann, K., Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration. J. Petrol. 59 (2018), 1467–1492.
2. Arefiev, A.V., Shatskiy, A., Podborodnikov, I.V., Litasov, K.D., Melting and subsolidus phase relations in the system K2CO3-MgCO3 at 3 GPa. High Pressure Res. 38 (2018), 422–439.
3. Arefiev, A.V., Podborodnikov, I.V., Shatskiy, A.F., Litasov, K.D., Synthesis and Raman spectra of K-Ca double carbonates: K2Ca(CO3)2 bütschliite, fairchildite and K2Ca2(CO3)3 at 1 atm. Geochem. Int. 57 (2019), 981–987.
4. Arefiev, A.V., Shatskiy, A., Podborodnikov, I.V., Behtenova, A., Litasov, K.D., The system K2CO3–CaCO3–MgCO3 at 3 GPa: implications for carbonatite melt compositions in the subcontinental lithospheric mantle. Minerals, 9, 2019, 296.
5. Arefiev, A.V., Shatskiy, A., Podborodnikov, I.V., Bekhtenova, A., Litasov, K.D., The system K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for carbonatite melt compositions in the subcontinental lithospheric mantle. Minerals, 9, 2019, 296.
6. Arefiev, A.V., Shatskiy, A., Podborodnikov, I.V., Litasov, K.D., The K2CO3–CaCO3–MgCO3 system at 6 GPa: implications for diamond forming carbonatitic melts. Minerals, 9, 2019, 558.
7. Bailey, D.K., Lithosphere control of continental rift magmatism. J. Geol. Soc. 133 (1977), 103–106.
8. Brey, G.P., Bulatov, V.K., Girnis, A.V., Melting of K-rich carbonated peridotite at 6-10 GPa and the stability of K-phases in the upper mantle. Chem. Geol. 281 (2011), 333–342.
9. Buob, A., Luth, R.W., Schmidt, M.W., Ulmer, P., Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Am. Mineral. 91 (2006), 435–440.
10. Dalton, J.A., Presnall, D.C., Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib. Mineral. Petrol. 131 (1998), 123–135.
11. Dasgupta, R., Hirschmann, M.M., Effect of variable carbonate concentration on the solidus of mantle peridotite. Am. Mineral. 92 (2007), 370–379.
12. Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M., Withers, A.C., Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 262 (2009), 57–77.
13. Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T., Kato, T., Shimomura, O., Urakawa, S., In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 143 (1996), 207–215.
14. Foley, S.F., Fischer, T.P., An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci., 10, 2017, 897.
15. Gavryushkin, P.N., Bakakin, V.V., Bolotina, N.B., Shatskiy, A.F., Seryotkin, Y.V., Litasov, K.D., Synthesis and crystal structure of new carbonate Ca3Na2(CO3)4 homeotypic with orthoborates M3Ln2(BO3)4 (M = Ca, Sr, and Ba). Cryst. Growth Des. 14 (2014), 4610–4616.
16. Gittins, J., The origin of carbonatites. Nature 335 (1988), 295–296.
17. Golovin, A.V., Sharygin, I.S., Korsakov, A.V., Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 455 (2017), 357–375.
18. Golovin, A., Sharygin, I., Kamenetsky, V., Korsakov, A., Yaxley, G., Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem. Geol. 483 (2018), 261–274.
19. Golovin, A., Sharygin, I., Korsakov, A., Kamenetsky, V., Abersteiner, A., Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc. 50 (2019), 1849–1867.
20. Hammouda, T., Laporte, D., Ultrafast mantle impregnation by carbonatite melts. Geology 28 (2000), 283–285.
21. Hesse, K.-F., Simons, B., Crystalstructure of synthetic K2Mg(CO3)2. Z. Krist. 161 (1982), 289–292.
22. Hudspeth, J., Sanloup, C., Kono, Y., Properties of molten CaCO3 at high pressure. Geochem. Perspect. Lett. 7 (2018), 17–21.
23. Jablon, B.M., Navon, O., Most diamonds were created equal. Earth Planet. Sci. Lett. 443 (2016), 41–47.
24. Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., Sobolev, N.V., Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32 (2004), 845–848.
25. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P., How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112 (2009), 334–346.
26. Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., Thomas, R., Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral. Mag. 73 (2009), 797–816.
27. Kaminsky, F.V., Wirth, R., Schreiber, A., Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Can. Mineral. 51 (2013), 669–688.
28. Kennedy, C.S., Kennedy, G.C., The equilibrium boundary between graphite and diamond. J. Geophys. Res. 81 (1976), 2467–2470.
29. Klein-BenDavid, O., Logvinova, A.M., Schrauder, M., Spetius, Z.V., Weiss, Y., Hauri, E.H., Kaminsky, F.V., Sobolev, N.V., Navon, O., High-Mg carbonatitic microinclusions in some Yakutian diamonds - a new type of diamond-forming fluid. Lithos 112 (2009), 648–659.
30. Kono, Y., Kenney-Benson, C., Hummer, D., Ohfuji, H., Park, C., Shen, G., Wang, Y., Kavner, A., Manning, C.E., Ultralow viscosity of carbonate melts at high pressures. Nat. Commun., 5, 2014, 5091.
31. Lavrent'ev, Y.G., Karmanov, N.S., Usova, L.V., Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope?. Russ. Geol. Geophys. 56 (2015), 1154–1161.
32. Lee, W.J., Huang, W.L., Wyllie, P., Melts in the mantle modeled in the system CaO-MgO-SiO2-CO2 at 2.7 GPa. Contrib. Mineral. Petrol. 138 (2000), 199–213.
33. Litasov, K.D., Shatskiy, A., Carbon-bearing magmas in the Earth's deep interior. Kono, Y., Sanloup, C., (eds.) Magmas under Pressure. Advances in High-Pressure Experiments on Structure and Properties of Melts, 2018, Elsevier, Amsterdam, Netherlands, 43–82.
34. Litasov, K.D., Shatskiy, A., Ohtani, E., Yaxley, G.M., The solidus of alkaline carbonatite in the deep mantle. Geology 41 (2013), 79–82.
35. Logvinova, A.M., Wirth, R., Fedorova, E.N., Sobolev, N.V., Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur. J. Mineral. 20 (2008), 317–331.
36. Logvinova, A.M., Wirth, R., Tomilenko, A.A., Afanas'ev, V.P., Sobolev, N.V., The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russ. Geol. Geophys. 52 (2011), 1286–1297.
37. Logvinova, A.M., Shatskiy, A., Wirth, R., Tomilenko, A.A., Ugap'eva, S.S., Sobolev, N.V., Carbonatite melt in type Ia gem diamond. Lithos 342-343 (2019), 463–467.
38. Luth, R.W., Experimental determination of the reaction aragonite plus magnesite = dolomite at 5 to 9 GPa. Contrib. Mineral. Petrol. 141 (2001), 222–232.
39. Minarik, W.G., Watson, E.B., Interconnectivity of carbonate melt at low melt fraction. Earth Planet. Sci. Lett. 133 (1995), 423–437.
40. Navon, O., Hutcheon, I., Rossman, G., Wasserburg, G., Mantle-derived fluids in diamond micro-inclusions. Nature 335 (1988), 784–789.
41. Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., Sobolev, N.V., Mantle–slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. 110 (2013), 20408–20413.
42. Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F., Sobolev, N.V., Diamond formation from mantle carbonate fluids. Nature 400 (1999), 417–418.
43. Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Chanyshev, A.D., Litasov, K.D., The system Na2CO3-MgCO3 at 3 GPa. High Pressure Res. 38 (2018), 281–292.
44. Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Rashchenko, S.V., Chanyshev, A.D., Litasov, K.D., The system Na2CO3–CaCO3 at 3 GPa. Phys. Chem. Miner. 45 (2018), 773–787.
45. Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Bekhtenova, A., Litasov, K.D., New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem. Geol. 515 (2019), 50–60.
46. Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Litasov, K.D., Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution. Lithos 330-331 (2019), 74–89.
47. Pollack, H.N., Chapman, D.S., On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (1977), 279–296.
48. Rashchenko, S.V., Bakakin, V.V., Shatskiy, A.F., Gavryushkin, P.N., Seryotkin, Y.V., Litasov, K.D., Noncentrosymmetric Na2Ca4(CO3)5 carbonate of “M13M23XY3Z” structural type and affinity between borate and carbonate structures for design of new optical materials. Cryst. Growth Des. 17 (2017), 6079–6084.
49. Sharygin, I.S., Golovin, A.V., Korsakov, A.V., Pokhilenko, N.P., Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia) – a new locality and host rock type. Eur. J. Mineral. 25 (2013), 825–834.
50. Sharygin, I., Litasov, K., Shatskiy, A., Golovin, A., Ohtani, E., Pokhilenko, N., Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0-6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 28 (2015), 1391–1414.
51. Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Litasov, K.D., Kupriyanov, I.N., Higo, Y., Borzdov, Y.M., Funakoshi, K., Palyanov, Y.N., Ohtani, E., Melting and subsolidus phase relations in the system Na2CO3-MgCO3+-H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am. Mineral. 98 (2013), 2172–2182.
52. Shatskiy, A., Litasov, K.D., Borzdov, Y.M., Katsura, T., Yamazaki, D., Ohtani, E., Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: Implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle. Phys. Earth Planet. Inter. 225 (2013), 1–11.
53. Shatskiy, A., Sharygin, I.S., Litasov, K.D., Borzdov, Y.M., Palyanov, Y.N., Ohtani, E., New experimental data on phase relations for the system Na2CO3-CaCO3 at 6 GPa and 900-1400 °C. Am. Mineral. 98 (2013), 2164–2171.
54. Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Kupriyanov, I.N., Ohtani, E., Palyanov, Y.N., Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900-1700 °C and its relation to the system CaCO3-FeCO3-MgCO3. Am. Mineral. 99 (2014), 773–785.
55. Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Sharygin, I.S., Palyanov, Y.N., Ohtani, E., Phase relationships in the system K2CO3-CaCO3 at 6 GPa and 900-1450°C. Am. Mineral. 100 (2015), 223–232.
56. Shatskiy, A., Gavryushkin, P.N., Litasov, K.D., Koroleva, O.N., Kupriyanov, I.N., Borzdov, Y.M., Sharygin, I.S., Funakoshi, K., Palyanov, Y.N., Ohtani, E., Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. Eur. J. Mineral. 27 (2015), 175–184.
57. Shatskiy, A., Litasov, K.D., Ohtani, E., Borzdov, Y.M., Khmelnikov, A.I., Palyanov, Y.N., Phase relations in the K2CO3-FeCO3 and MgCO3-FeCO3 systems at 6 GPa and 900-1700 °C. Eur. J. Mineral. 27 (2015), 487–499.
58. Shatskiy, A., Rashchenko, S.V., Ohtani, E., Litasov, K.D., Khlestov, M.V., Borzdov, Y.M., Kupriyanov, I.N., Sharygin, I.S., Palyanov, Y.N., The system Na2CO3-FeCO3 at 6 GPa and its relation to the system Na2CO3-FeCO3-MgCO3. Am. Mineral. 100 (2015), 130–137.
59. Shatskiy, A.F., Litasov, K.D., Palyanov, Y.N., Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ. Geol. Geophys. 56 (2015), 113–142.
60. Shatskiy, A., Litasov, K.D., Palyanov, Y.N., Ohtani, E., Phase relations on the K2CO3-CaCO3-MgCO3 join at 6 GPa and 900–1400° C: Implications for incipient melting in carbonated mantle domains. Am. Mineral. 101 (2016), 437–447.
61. Shatskiy, A., Litasov, K.D., Sharygin, I.S., Egonin, I.A., Mironov, A.M., Palyanov, Y.N., Ohtani, E., The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900-1250 °C and its relation to the partial melting of carbonated mantle. High Pressure Res. 36 (2016), 23–41.
62. Shatskiy, A., Litasov, K.D., Sharygin, I.S., Ohtani, E., Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res. 45 (2017), 208–227.
63. Shatskiy, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Chanyshev, A.D., Sharygin, I.S., Karmanov, N.S., Ohtani, E., Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. Am. Mineral. 102 (2017), 1934–1946.
64. Shatskiy, A., Bekhtenova, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: Implications for metasomatic melt composition in subcontinental lithospheric mantle. Chem. Geol., 558, 2020, 119915.
65. Shatskiy, A., Bekhtenova, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Metasomatic interaction of the eutectic Na-and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200 °C: toward carbonatite melt composition in SCLM. Lithos, 374-375, 2020, 105725.
66. Stagno, V., Stopponi, V., Kono, Y., Manning, C.E., Irifune, T., Experimental determination of the viscosity of Na2CO3 melt between 1.7 and 4.6 GPa at 1200–1700° C: implications for the rheology of carbonatite magmas in the Earth's upper mantle. Chem. Geol. 501 (2018), 19–25.
67. Sweeney, R.J., Carbonatite melt compositions in the Earth's mantle. Earth Planet. Sci. Lett. 128 (1994), 259–270.
68. Sweeney, R., Falloon, T., Green, D., Experimental constraints on the possible mantle origin of natrocarbonatite. Carbonatite Volcanism, 1995, Springer, 191–207.
69. Syracuse, E.M., van Keken, P.E., Abers, G.A., The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183 (2010), 73–90.
70. Wallace, M.E., Green, D.H., An experimental determination of primary carbonatite magma composition. Nature 335 (1988), 343–346.
71. Weiss, Y., Kessel, R., Griffin, W.L., Kiflawi, I., Klein-BenDavid, O., Bell, D.R., Harris, J.W., Navon, O., A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112 (2009), 660–674.
72. White, W.B., The carbonate minerals. Farmer, V.C., (eds.) The Infrared Spectra of the Minerals, 1974, Mineralogical Society Monograph. Mineralogical Society, London, 227–284.
73. Wyllie, P.J., Huang, W.L., Inflence of mantle CO2 ingeneration of carbonatites and kimberlites. Nature 257 (1975), 297–299.
74. Yaxley, G.M., Brey, G.P., Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib. Mineral. Petrol. 146 (2004), 606–619.
75. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., Kagi, H., Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112 (2009), 638–647.
76. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Griffin, W.L., Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Mineral. Petrol., 173, 2018, 84.
|