Инд. авторы: Rampilova M., Doroshkevich A.G., Viladkar S., Zubakova E.
Заглавие: Mineralogy of Dolomite Carbonatites of Sevathur Complex, Tamil Nadu, India
Библ. ссылка: Rampilova M., Doroshkevich A.G., Viladkar S., Zubakova E. Mineralogy of Dolomite Carbonatites of Sevathur Complex, Tamil Nadu, India // MINERALS. - 2021. - Vol.11. - Iss. 4. - Art.355.
Внешние системы: DOI: 10.3390/min11040355; РИНЦ: 46784731; WoS: 000643333700001;
Реферат: eng: The main mass of the Sevathur carbonatite complex (Tamil Nadu, India) consists of dolomite carbonatite with a small number of ankerite carbonatite dikes. Calcite carbonatite occurs in a very minor amount as thin veins within the dolomite carbonatite. The age (Pb-207/Pb-204) of the Sevathur carbonatites is 801 +/- 11 Ma, they are emplaced within the Precambrian granulite terrains along NE-SW trending fault systems. Minor minerals in dolomite carbonatite are fluorapatite, phlogopite (with a kinoshitalite component), amphibole and magnetite. Pyrochlore (rich in UO2), monazite-Ce, and barite are accessory minerals. Dolomite carbonatite at the Sevathur complex contains norsethite, calcioburbankite, and benstonite as inclusions in primary calcite and are interpreted as primary minerals. They are indicative of Na, Sr, Mg, Ba, and LREE enrichment in their parental carbonatitic magma. Norsethite, calcioburbankite, and benstonite have not been previously known at Sevathur. The hydrothermal processes at the Sevathur carbonatites lead to alteration of pyrochlore into hydropyrochlore, and Ba-enrichment. Also, it leads to formation of monazite-(Ce) and barite-II.
Ключевые слова: pyrochlore; norsethite; benstonite; Sevathur; India; calcioburbankite; dolomite carbonatites;
Издано: 2021
Физ. характеристика: 355
Цитирование: 1. Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; et al. Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed.; Le Maitre, R.W., Ed.; Cambridge University Press: Cambridge, UK, 2002; ISBN 9780521619486. 2. Borodin, L.S.; Gopal, V.; Moralev, V.M.; Subramanian, V. Precambrian carbonatites of Tamil Nadu, South India. J. Geol. Soc. India 1971, 12, 101–112. 3. Grady, J.C. Deep main faults in South India. J. Geol. Soc. India 1971, 12, 56–62. 4. Randive, K.; Meshram, T. An Overview of the carbonatites from the Indian subcontinent. Open Geosci. 2020, 12, 85–116. [CrossRef] 5. Schleicher, H.; Todt, W.; Viladkar, S.G.; Schmidt, F. Pb/Pb age determinations on Newania and Sevathur carbonatites of India: Evidence for multi-stage histories. Chem. Geol. 1997, 140, 261–273. [CrossRef] 6. Viladkar, S.G.; Subramanian, V. Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. J. Geol. Soc. India 1995, 45, 505–517. 7. Viladkar, S.G.; Bismayer, U. U-rich pyrochlore from Sevathur carbonatites, Tamil Nadu. J. Geol. Soc. India 2014, 83, 147–154. [CrossRef] 8. Viladkar, S.G.; Wimmenauer, W. Mineralogy and geochemistry of the Newania carbonatite-fenite complex, Rajasthan, India. N. Jb. Miner. Abh. 1986, 156, 1–21. 9. Goldsmith, J.R.; Graf, D.L.; Witters, J.; Northrop, D.A. Studies in the synthetic CaCO3-MgCO3-FeCO3: 1. Phase relations; 2. A method for major-element spectrochemical analysis; 3. Compositions of some ferrian dolomites. J. Geol. 1962, 70, 659–688. [CrossRef] 10. Mitchell, R.H. Kimberlite, Orangeites and Related Rocks; Plenum Press: New York, NY, USA, 1995; 410p. 11. Kogarko, L.N.; Ryabchikov, I.D.; Kuzmin, D.V. High-Ba mica in olivinites of the Guli massif (Maymecha–Kotuy province, Siberia). Russ. Geol. Geophys. 2012, 53, 1209–1215. [CrossRef] 12. Doroshkevich, A.G.; Chebotarev, D.A.; Sharygin, V.V.; Prokopyev, I.R.; Nikolenko, A.M. Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: Sources, evolution and relation to the Triassic Siberian LIP. Lithos 2019, 332–333, 245–260. [CrossRef] 13. Giebel, R.J.; Marks, M.A.W.; Gauert, C.D.K.; Markl, G. A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 2019, 324–325, 89–104. [CrossRef] 14. Kogarko, L.N.; Kurat, G.; Ntaflos, T. Henrymeyerite in the metasomatized upper mantle of eastern Antarctica. Can. Mineral. 2007, 45, 497–501. [CrossRef] 15. Atencio, D.; Andrade, M.B.; Christy, A.G.; Giere, R.; Kartashov, P.M. The pyrochlore supergroup of minerals: Nomenclature. Can. Mineral. 2010, 48, 673–698. [CrossRef] 16. Mrose, M.E.; Chao, E.C.T.; Fahey, J.J.; Milton, C. Norsethite, BaMg(CO3)2, a new mineral from the Green River formation, Wyoming. Am. Mineral. 1961, 46, 420–429. 17. Sundius, N.; Blix, R. Norsethite from Lengban. Arkiv. Mineral. Geol. 1965, 4, 277–278. 18. Steyn, J.G.D.; Watson, M.D. Note on a new occurrence of norsethite, BaMg(CO3)2. Amer. Miner. 1967, 52, 1770–1775. 19. Onac, B.P. Caves formed within Upper Cretaceous skarns at Baita, Bihor County, Romania: Mineral deposition and speleogenesis. Can. Miner. 2002, 40, 1693–1703. [CrossRef] 20. Zidarov, N.; Petrov, O.; Tarassov, M.; Damyanov, Z.; Tarassova, E.; Petkova, V.; Kalvachev, Y.; Zlatev, Z. Mn-rich norsethite from the Kremikovtsi ore deposit, Bulgaria. N. Jb. Miner. Abh. 2009, 186, 321–331. 21. Kapustin, J.L. Norsethite—The first find in USSR. Doklady Acad. Nauk USSR 1965, 161, 922–924. (In Russian) 22. Kozlov, E.; Fomina, E.; Sidorov, M.; Shilovskikh, V.; Bocharov, V.; Chernyavsky, A.; Huber, M. The petyayan-vara carbonatite-hosted rare earth deposit (Vuoriyarvi, NW Russia): Mineralogy and geochemistry. Minerals 2020, 10, 73. [CrossRef] 23. Platt, R.G.; Woolley, A.R. The carbonatites and fenites of Chipman lake, Ontario. Can. Miner. 1990, 28, 241–250. 24. Secco, L.; Lavina, L. Crystal chemistry of two natural magmatic norsethites, BaMg(CO3)2, from an Mg-carbonatites of the alkaline carbonatitic complex of Tapira (SE Brazil). N. Jb. Miner. Mh. 1999, 2, 87–96. 25. Lippman, F. Benstonite, Ca7Ba6 (CO3)l3, a new mineral from barite deposits in Hot Spring County, Arkansas. Amer. Miner. 1962, 47, 585–598. 26. Sundius, N. Benstonite and tephroite from Longban. Ark. Miner. Geol. 1963, 3, 407–411. 27. White, J.S., Jr.; Jarosewich, E. Second occurrence of benstonite. Miner. Rec. 1970, 1, 140–141. 28. Finlow-Bates, T. The possible significance of uncommon barium-rich mineral assemlages in sediment-hosted lead-zinc deposits. Geol. Mijnbouw. 1987, 66, 65–66. 29. Semenov, E.; Gopal, V.; Subramaian, V. Note on the occurrence of benstonite. Surr. Sci. 1971, 40, 62–67. 30. Vladykin, N.V.; Viladkar, S.G.; Miyazaki, T.; Mohan, R.V. Geochemistry of benstonite and associated carbonatites of Sevathur, Jogipatti and Samalpatti, Tamil Nadu, South India and Murun massif, Siberia. J. Geol. Soc. India 2008, 72, 312–324. 31. Ontoyev, D.O.; Dmitrieva, M.T.; Ontoeva, T.D. About strontium variety of benstonite. Zap. Ross. Mineral. O-va 1986, 4, 496–501. 32. Konev, A.A.; Kartashev, P.M.; Koneva, A.A.; Ushchapovskaya, Z.F.; Nartova, N.V. Mg-deficient strontium benstonite from the ore occurrence Biraya (Siberia). Zap. Ross. Mineral. O-va 2004, 133, 65–73. 33. Belovitskaya, Y.V.; Pekov, I.V. Genetic mineralogy of the burbankite group. New Data Miner. 2004, 39, 50–64. 34. Van Velthuizen, J.; Gault, R.; Grice, J.D. Calcioburbankite, Na3 (Ca,REE,Sr)3 (CO3)5, a new mineral species from Mont Saint Hilaire, Quebec, and its relationship to the burbankite group of minerals. Can. Mineral. 1995, 33, 1231–1235. 35. Subbotin, V.V.; Voloshin, A.V.; Pakhomovskii, Y.A.; Bakhchisaraitsev, A.Y. Calcioburbankite and burbankite from Vuoriyarvi carbonatite massif (new data). Zap. Ross. Mineral. O-va 1999, 1, 78–87. (In Russian) 36. Pozharitskaya, L.K.; Samoilov, V.S. Petrology, Mineralogy and Geochemistry of Carbonatites of East Siberia (Petrologiya, Mineralogiyai Geokhimiya Karbonatitov Vostochnoi Sibiri); Nauka: Moscow, Russia, 1972; 268p. (In Russian) 37. Khromova, E.A. Age and Petrogenesis of Rocks of the Alkaline-Ultrabasic Carbonatite Belaya Zima Massif (Eastern Sayan); Candidate of Geology, Geological Institute Siberian Branch of the Russian Academy of Sciences: Ulan-Ude, Russia, 2020. (In Russian) 38. Baker, M.B.; Wyllie, P.J. High-pressure apatite solubility in carbonate-rich liquids: Implications for mantle metasomatism. Geochim. Cosmochim. Acta 1992, 56, 3409–3422. [CrossRef] 39. Ryabchikov, I.D.; Hamilton, D.L. Interaction of carbonate-phosphate melts with mantle peridotites at 20–35 kbar. S. Afr. J. Geol. 1993, 96, 143–148. 40. Zaitsev, A.N.; Chakhmouradian, A.R. Calcite-amphiboleclinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: Mineralogy and a possible link to carbonatites. II Oxysalt minerals. Can. Mineral. 2002, 40, 103–120. [CrossRef] 41. Zaitsev, A.N.; Sitnikova, M.A.; Subbotin, V.V.; Fernández-Suárez, J.; Jeffries, T.E. Sallanlatvi complex—A rare example of magnesite and siderite carbonatites. In Phoscorites and Carbonatites from Mantle to Mine; Wall, F., Zaitsev, A.N., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 2004; pp. 201–245. 42. Faiziev, A.R.; Iskandarov, F.S.; Gafurov, F.G. Mineralogical and petrogenetic characteristics of carbonatites of Dunkeldykskii alkali massif (eastern Pamirs). Proc. Russ. Mineral. Soc. 1998, 127, 54–57. (In Russian) 43. Tichomirowa, M.; Whitehouse, M.J.; Gerdes, A.; Götze, J.; Schulz, B.; Belyatsky, B.V. Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chem. Geol. 2013, 353, 173–198. [CrossRef] 44. Chakhmouradian, A.R.; Reguir, E.P.; Zaitsev, A.N. Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineral. Petrol. 2016, 110, 333–360. [CrossRef] 45. Chakhmouradian, A.R.; Dahlgren, S. Primary inclusions of burbankite in carbonatites from the Fen complex, southern Norway. Miner. Petrol. 2021, 115, 161–171. [CrossRef] 46. Puustinen, K. Dolomite exsolution textures in calcite from the Siilinjärvi carbonatite complex, Finland. Bull. Geol. Soc. Finl. 1974, 46, 151–159. [CrossRef] 47. Zaitsev, A.N.; Polezhaeva, L. Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola peninsula, Russia: Their genesis and application for calcite-dolomite geothermometry. Contrib. Mineral. Petrol. 1994, 115, 339–344. [CrossRef] 48. Dawson, J.B.; Hinton, R.W. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Min. Mag. 2003, 67, 921–930. [CrossRef] 49. Konev, A.A.; Vorob’ev, E.I.; Lazebnik, K.A. Mineralogy of the Murun Alkaline Massif; Siberian Branch Russian Academy of Sciences: Novosibirsk, Russia, 1996; p. 221. (In Russian) 50. Yaroshevsky, A.A.; Bagdasarov, Y.A. Geochemical diversity of minerals of the pyrochlore group. Geochem. Int. 2008, 46, 1245–1266. [CrossRef] 51. Redkin, A.F.; Borodulin, G.P. Pyrochlores as indicators of the uranium bearing potential of magmatic melts. Dokl. Earth Sci. 2010, 432, 787–790. [CrossRef] 52. Hogarth, D.D. Pyrochlore, apatite and amphibole: Distinctive minerals in carbonatite. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 105–148. 53. Kjarsgaard, K.J.; Mitchell, R.H. Solubility of Ta in the system CaCO3–Ca(OH)2–NaTaO3– NaNbO3 ± F at 0.1 GPa: Implications for the crystallization of pyrochlore-group minerals in carbonatites. Can. Mineral. 2008, 46, 981–990. [CrossRef] 54. Lapin, A.V.; Kulikova, I.M. Alteration processes in pyrochlore and their products in weathering crusts of carbonatites. Zap. Ross. Mineral. O-va 1989, 118, 41–49. 55. Entin, A.R.; Yeremenko, G.Y.; Tyan, O.A. Stages of alteration of primary pyrochlores. Trans. (Dokaldy) U.S.S.R. Acad. Sci. Earth Sci. Sect. 1993, 320, 236–239. 56. Jager, E.; Niggli, E.; Van Der Veen, A.H. A hydrated bariumstrontium pyrochlore in a biotite rock from Panda Hill, Tanganyika. Mineral. Mag. 1959, 32, 10–25. 57. Van Wambeke, L. Pandaite, baddeleyite and associated minerals from the Bingo niobium deposit, Kivu, Democratic Republic of Congo. Miner. Depos. 1971, 6, 153–155. [CrossRef] 58. Van Wambeke, L. Kalipyrochlore, a new mineral of the pyrochlore group. Am. Mineral. 1978, 63, 528–530. 59. Hogarth, D.D.; Williams, C.T.; Jones, P. Primary zoning in pyrochlore group of minerals from carbonatites. Mineral. Mag. 2000, 64, 683–697. [CrossRef] 60. Hogarth, D. The pyrochlore group. Am. Mineral. 1977, 62, 403–410. 61. Bonazzi, P.; Bindi, L.; Zoppi, M.; Capitani, G.C.; Olmi, F. Single-crystal diffraction and transmission electron microscopy studies of “silicified” pyrochlore from Narssarssuk, Julianehaab district, Greenland. Am. Mineral. 2006, 91, 794–801. [CrossRef] 62. Williams, C.T.; Wall, F.; Woolley, A.R.; Phillipo, S. Compositional variation in pyrochlore from the Bingo carbonatite, Zaire. J. Afr. Earth Sci. 1997, 25, 137–145. [CrossRef] 63. Nasraoui, M.; Bilal, E. Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): A geochemical record of deferent alteration stages. J. Asian Earth Sci. 2000, 18, 237–251. [CrossRef] 64. Lumpkin, G.R.; Ewing, R.C. Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. Am. Mineral. 1995, 80, 732–742. [CrossRef] 65. Chebotarev, D.A.; Doroshkevich, A.G.; Klemd, R.; Karmanov, N.S. Evolution of Nb-mineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia). Period. Mineral. 2017, 86, 99–118. 66. Burtseva, M.V.; Ripp, G.S.; Doroshkevich, A.G.; Viladkar, S.G.; Rammohan, V. Features of mineral and chemical composition of the Khamambettu carbonatites, Tamil Nadu. J. Geol. Soc. India 2013, 81, 655–664. [CrossRef] 67. Prokopyev, I.R.; Doroshkevich, A.G.; Ponomarchuk, A.V.; Sergeev, S.A. Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol. Rev. 2017, 81, 296–308. [CrossRef] 68. Prokopyev, I.R.; Doroshkevich, A.G.; Sergeev, S.A.; Ernst, R.E.; Ponomarev, J.D.; Redina, A.A.; Chebotarev, D.A.; Nikolenko, A.M.; Dultsev, V.F.; Moroz, T.N.; et al. Petrography, mineralogy and SIMS U-Pb geochronology of 1.9–1.8 Ga carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province (South Yakutia, Russia). Mineral. Petrol. 2019, 113, 329–352. [CrossRef] 69. Nikolenko, A.M.; Redina, A.A.; Doroshkevich, A.G.; Prokopyev, I.R.; Ragozin, A.L.; Vladykin, N.V. The origin of magnetite-apatite rocks of Mushgai-Khudag Complex, South Mongolia: Mineral chemistry and studies of melt and fluid inclusions. Lithos 2018, 320–321, 567–582. [CrossRef] 70. Harlov, D.E.; Förster, H.J.; Nijland, T.G. Fluid induced nucleation of REE-phosphate minerals in apatite: Nature and experiment. Part I. Chlorapatite. Am. Mineral. 2002, 87, 245–261. [CrossRef] 71. Harlov, D.E.; Förster, H.-J. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. Am. Mineral. 2003, 88, 1209–1229. [CrossRef] 72. Harlov, D.E.; Wirth, R.; Förster, H.J. An experimental study of dissolution–reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contrib. Mineral. Petrol. 2005, 150, 268–286. [CrossRef] 73. Williams-Jones, A.E.; Migdisov, A.A.; Samson, I.M. Hydrothermal mobilization of the rare earth elements-a tale of “Ceria” and “Yttria”. Elements 2012, 8, 355–360. [CrossRef] 74. Tropper, P.; Manning, C.E.; Harlov, D.E. Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800C and 1 GPa: Implications for REE and Y transport during high-grade metamorphism. Chem. Geol. 2011, 282, 58–66. [CrossRef] 75. Tropper, P.; Manning, C.E.; Harlov, D.E. Experimental determination of CePO4 and YPO4 solubilities in H2O–NaF at 800C and 1 GPa: Implications for rare earth element transport in high-grade metamorphic fluids. Geofluids 2013, 13, 372–380. [CrossRef] 76. Broom-Fendley, S.; Styles, M.T.; Appleton, J.D.; Gunn, G.; Wall, F. Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am. Mineral. 2016, 101, 596–611. [CrossRef]