Инд. авторы: Palyanov Y.N., Borzdov Y.M., Kupriyanov I.N., Khohkhryakov A.F., Nechaev D.V.
Заглавие: Rare-earth metal catalysts for high-pressure synthesis of rare diamonds
Библ. ссылка: Palyanov Y.N., Borzdov Y.M., Kupriyanov I.N., Khohkhryakov A.F., Nechaev D.V. Rare-earth metal catalysts for high-pressure synthesis of rare diamonds // Scientific Reports. - 2021. - Vol.11. - Iss. 1. - Art.8421. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/s41598-021-88038-5; РИНЦ: 46009546; PubMed: 33875767; WoS: 000642571100006;
Реферат: eng: The combination of the unique properties of diamond and the prospects for its high-technology applications urges the search for new solvents-catalysts for the synthesis of diamonds with rare and unusual properties. Here we report the synthesis of diamond from melts of 15 rare-earth metals (REM) at 7.8 GPa and 1800-2100 degrees C. The boundary conditions for diamond crystallization and the optimal parameters for single crystal diamond synthesis are determined. Depending on the REM catalyst, diamond crystallizes in the form of cube-octahedrons, octahedrons and specific crystals bound by tetragon-trioctahedron and trigon-trioctahedron faces. The synthesized diamonds are nitrogen-free and belong to the rare type II, indicating that the rare-earth metals act as both solvent-catalysts and nitrogen getters. It is found that the REM catalysts enable synthesis of diamond doped with group IV elements with formation of impurity-vacancy color centers, promising for the emerging quantum technologies. Our study demonstrates a new field of application of rare-earth metals.
Ключевые слова: CRYSTALLIZATION; GROWTH; C SYSTEM;
Издано: 2021
Физ. характеристика: 8421
Цитирование: 1. Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, J. R. Man-made diamonds. Nature 176, 51–55 (1955). DOI: 10.1038/176051a0 2. Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, J. R. Preparation of diamond. Nature 184, 1094–1098 (1959). DOI: 10.1038/1841094a0 3. Kanda, H. Classification of the catalysts for diamond growth. In Advances in New Diamond Science and Technology (eds Saito, S. et al.) 507–512 (MYU, 1999). 4. Wedlake, R. J. Technology of diamond growth. In The Properties of Diamond (ed. Field, J. E.) 501–535 (Academic Press, 1979). 5. Burns, R. C. & Davies, G. J. Growth of synthetic diamond. In The Properties of Natural and Synthetic Diamond (ed. Field, J. E.) 395–422 (Academic Press, 1992). 6. Palyanov, Y., Kupriyanov, I., Khokhryakov, A. & Ralchenko, V. Crystal Growth of Diamond. In Handbook of Crystal Growth (Chap. 17) Vol. II (eds Nishinaga, T. & Rudolph, P.) 671–713 (Elsevier, 2015). DOI: 10.1016/B978-0-444-63303-3.00017-1 7. Akaishi, M., Kanda, H. & Yamaoka, S. Phosphorous: an elemental catalyst for diamond synthesis and growth. Science 259, 1592–1593 (1993). DOI: 10.1126/science.259.5101.1592 8. Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004). DOI: 10.1038/nature02449 9. Aharonovich, I. et al. Diamond based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011). DOI: 10.1088/0034-4885/74/7/076501 10. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018). DOI: 10.1038/s41566-018-0232-2 11. Lühmann, T. et al. Screening and engineering of colour centres in diamond. J. Phys. D Appl. Phys. 51, 483002 (2018). DOI: 10.1088/1361-6463/aadfab 12. Palyanov, Y. N., Kupriyanov, I. N., Borzdov, Y. M. & Surovtsev, N. V. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep. 5, 14789 (2015). DOI: 10.1038/srep14789 13. Palyanov, Y. N., Kupriyanov, I. N., Khokhryakov, A. F. & Borzdov, Y. M. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 19, 4459–4475 (2017). DOI: 10.1039/C7CE01083D 14. Palyanov, Y. N., Borzdov, Y. M., Kupriyanov, I. N., Khokhryakov, A. F. & Nechaev, D. V. Diamond crystallization from an Mg–C system at high pressure high temperature conditions. CrystEngComm 17, 4928–4936 (2015). DOI: 10.1039/C5CE00897B 15. Palyanov, Y. N., Kupriyanov, I. N., Borzdov, Y. M., Khokhryakov, A. F. & Surovtsev, N. V. High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 16, 3510–3518 (2016). DOI: 10.1021/acs.cgd.6b00481 16. Palyanov, Y. N., Kupriyanov, I. N. & Borzdov, Y. M. High-pressure synthesis and characterization of Sn-doped single crystal diamond. Carbon 143, 769–775 (2019). DOI: 10.1016/j.carbon.2018.11.084 17. Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017). DOI: 10.1103/PhysRevLett.119.223602 18. Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017). DOI: 10.1103/PhysRevLett.118.223603 19. Iwasaki, T. et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 119, 253601 (2017). DOI: 10.1103/PhysRevLett.119.253601 20. Ekimov, E. A., Zibrov, I. P., Malykhin, S. A., Khmelnitskiy, R. A. & Vlasov, I. I. Synthesis of diamond in double carbon-rare earth element systems. Mater. Lett. 193, 130–132 (2017). DOI: 10.1016/j.matlet.2017.01.110 21. Kanda, H. & Fukunaga, O. In Growth of large diamond crystals High-Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 525–535 (Academic, 1982). DOI: 10.1007/978-94-009-7867-6_39 22. Giardini, A. A. & Tydings, J. E. Diamond synthesis: observations on the mechanism of formation. Am. Miner. 47, 1393–1421 (1962). 23. Strong, H. M. & Chrenko, R. M. Diamond growth rates and physical properties of laboratory-made diamond. J. Phys. Chem. 75, 1838–1843 (1971). DOI: 10.1021/j100681a014 24. Kanda, H., Ohsawa, T., Fukunaga, O. & Sunagawa, I. Effect of solvent metals upon the morphology of synthetic diamonds. J. Cryst. Growth 94, 115–124 (1989). DOI: 10.1016/0022-0248(89)90610-6 25. Kupriyanov, I. N., Khokhryakov, A. F., Borzdov, Y. M. & Palyanov, Y. N. HPHT growth and characterization of diamond from a copper–carbon system. Diam. Relat. Mater. 69, 198–206 (2016). DOI: 10.1016/j.diamond.2016.09.009 26. Burns, R. C. et al. Growth-sector dependence of optical features in large synthetic diamonds. J. Cryst. Growth. 104, 257–279 (1990). DOI: 10.1016/0022-0248(90)90126-6 27. Burns, R. C. et al. Growth of high purity large synthetic diamond crystals. Diam. Relat. Mater. 8, 1433–1437 (1999). DOI: 10.1016/S0925-9635(99)00042-4 28. Kiflawi, I., Kanda, H. & Lawson, S. C. The effect of the growth rate on the concentration of nitrogen and transition metal impurities in HPHT synthetic diamond. Diam. Relat. Mater. 11, 204–211 (2002). DOI: 10.1016/S0925-9635(01)00569-6 29. Collins, A. T. & Williams, A. W. S. The nature of the acceptor centre in semiconducting diamond. J. Phys. C Solid State Phys. 4, 1789–1800 (1971). DOI: 10.1088/0022-3719/4/13/030 30. Fang, C. et al. Si doping effects on the growth of large single-crystal diamond in a Ni-based metal catalyst system under high pressure and high temperature. Cryst. Growth Des. 19, 3955–3961 (2019). DOI: 10.1021/acs.cgd.9b00355 31. Gupta, C. K. & Krishnamurthy, N. Extractive Metallurgy of Rare Earths (CRC Press, 2005). 32. Voncken, J. H. L. The Rare Earth Elements. An Introduction, SpringerBriefs in Earth Sciences (Springer, 2016). 33. Palyanov, Y., Kupriyanov, I., Borzdov, Y., Nechaev, D. & Bataleva, Y. HPHT diamond crystallization in the Mg–Si–C system: effect of Mg/Si composition. Curr. Comput. Aided Drug Des. 7, 119 (2017). 34. Palyanov, Y. N., Kupriyanov, I. N., Borzdov, Y. M. & Nechaev, D. V. Effect of the solvent–catalyst composition on diamond crystallization in the Mg–Ge–C system. Diam. Relat. Mater. 89, 1–9 (2018). DOI: 10.1016/j.diamond.2018.08.002 35. Sokol, A. G., Borzdov, Y. M., Palyanov, Y. N. & Khokhryakov, A. F. High-temperature calibration of a multianvil high pressure apparatus. High Press. Res. 35, 139–147 (2015). DOI: 10.1080/08957959.2015.1017819