Инд. авторы: Borisov A., Veksler I.V.
Заглавие: Immiscible silicate liquids: K and Fe distribution as a test for chemical equilibrium and insight into the kinetics of magma unmixing
Библ. ссылка: Borisov A., Veksler I.V. Immiscible silicate liquids: K and Fe distribution as a test for chemical equilibrium and insight into the kinetics of magma unmixing // Contributions to Mineralogy and Petrology. - 2021. - Vol.176. - Iss. 6. - Art.47. - ISSN 0010-7999. - EISSN 1432-0967.
Внешние системы: DOI: 10.1007/s00410-021-01798-1; РИНЦ: 46843749; WoS: 000653102700002;
Реферат: eng: Silicate liquid immiscibility leading to formation of mixtures of distinct iron-rich and silica-rich liquids is common in basaltic and andesitic magmas at advanced stages of magma evolution. Experimental modeling of the immiscibility has been hampered by kinetic problems and attainment of chemical equilibrium between immiscible liquids in some experimental studies has been questioned. On the basis of symmetric regular solutions model and regression analysis of experimental data on compositions of immiscible liquid pairs, we show that liquid-liquid distribution of network-modifying elements K and Fe is linked to the distribution of network-forming oxides SiO2, Al2O3 and P2O5 by equation: logK(d)(K/Fe) = 3.796 Delta X-SiO2(sf) + 4.85 Delta X-Al2O3(sf) + 7.235 Delta X-P2O5(sf) - 0.108,where K-d(K/Fe) is a ratio of K and Fe mole fractions in the silica-rich (s) and Fe-rich (f) immiscible liquids: K-d(K/Fe) = (X-K(s)/X-K(f))/(X-Fe(s)/X-Fe(f)) and Delta X-i(sf) is a difference in mole fractions of a network-forming oxide i between the liquids (s) and (f): Delta X-i(sf) = X-i(s) -X-i(f). We use the equation for testing chemical equilibrium in experiments not included in the regression analysis and compositions of natural immiscible melts found as glasses in volcanic rocks. Departures from equilibrium that the test revealed in crystal-rich multiphase experimental products and in natural volcanic rocks imply kinetic competition between liquid-liquid and crystal-liquid element partitioning. Immiscible liquid droplets in volcanic rocks appear to evolve along a metastable trend due to rapid crystallization. Immiscible liquids may be closer to chemical equilibrium in large intrusions where cooling rates are lower and crystals may be spatially separated from liquids.
Ключевые слова: Igneous rocks; Silicate melts; OLIVINE; IRON; EVOLUTION; MELT; OXYGEN FUGACITY; SKAERGAARD INTRUSION; PARTITION-COEFFICIENTS; BASALTIC MAGMA; OF-PETROLOGY 48; Symmetric regular solutions; Liquid-liquid element distribution; STRUCTURAL ROLE; Experimental petrology;
Издано: 2021
Физ. характеристика: 47
Цитирование: 1. Blundy J, Melekhova E, Ziberna L, Humphreys MC, Cerantola V, Brooker RA, McCammon CA, Pichavant M, Ulmer P (2020) Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts. Contrib Miner Pet 175:103 DOI: 10.1007/s00410-020-01736-7 2. Bogaerts M, Schmidt MW (2006) Experiments on silicate melt immiscibility in the system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas. Contrib Miner Pet 152:257–274 DOI: 10.1007/s00410-006-0111-6 3. Borisov A, Behrens H, Holtz F (2018) Ferric/ferrous ratio in silicate melts, a new model for 1 atm data with special emphasis on the effects of melt composition. Contrib Mineral Petrol 173, Article 98 4. Charlier B, Grove TL (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib Miner Pet 164:27–44 DOI: 10.1007/s00410-012-0723-y 5. Charlier B, Namur O, Grove TL (2013) Compositional and kinetic controls on liquid immiscibility in ferrobasalt–rhyolite volcanic and plutonic series. Geochim Cosmochim Acta 113:79–93 DOI: 10.1016/j.gca.2013.03.017 6. Dixon S, Rutherford MJ (1979) Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth Planet Sci Lett 45:45–60 DOI: 10.1016/0012-821X(79)90106-7 7. Freestone IC, Powell P (1983) The low temperature field of liquid immiscibility in the system K2O-FeO-Al2O3-SiO2 with special reference to the join fayalite-leucite-silica. Contrib Miner Pet 82:291–299 DOI: 10.1007/BF01166623 8. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134 DOI: 10.1016/j.epsl.2008.03.038 9. Greig JW (1927) Immiscibility in silicate melts. Amer J Sci 13:133–154 10. Holness MB, Stripp G, Humphreys MCS, Veksler IV, Nielsen TFD (2011) Silicate liquid immiscibility within the crystal mush: late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland. J Petrol 52:175–222 DOI: 10.1093/petrology/egq077 11. Honour VC, Holness MB, Partridge JL, Charlier B (2019a) Microstructural evolution of silicate immiscible liquids in ferrobasalts. Contrib Miner Pet 174(9):77 DOI: 10.1007/s00410-019-1610-6 12. Honour VC, Holness MB, Charlier B, Piazolo SC, Namur O, Prosa TJ, Martin I, Helz RT, Jean MJ, MM, (2019b) Compositional boundary layers trigger liquid unmixing in a basaltic crystal mush. Nature Comm 10(1):1–8 DOI: 10.1038/s41467-019-12694-5 13. Hou T, Veksler IV (2015) Experimental confirmation of high-temperature silicate liquid immiscibility in multicomponent ferrobasaltic systems. Amer Miner 100:1304–1307 DOI: 10.2138/am-2015-5285 14. Hou T, Charlier B, Namur O, Schütte P, Schwarz-Schampera U, Zhang Z, Holtz F (2017) Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron-fluorine deposit, South Africa. Geochim Cosmochim Acta 203:303–322 DOI: 10.1016/j.gca.2017.01.025 15. Hou T, Charlier B, Holtz F, Veksler I, Zhang Z, Thomas R, Namur O (2018) Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Comm 9(1): 1–8. https://www.nature.com/articles/s41467-018-03761-4. Accessed 12 April 2018 16. Hudon P, Baker DR (2002) The nature of phase separation in binary oxide melts and glasses. I. Silicate systems. J Non-Cryst Solids 303:299–345 DOI: 10.1016/S0022-3093(02)01043-8 17. Jakobsen JK, Veksler IV, Tegner C, Brooks CK (2005) Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33:885–888 DOI: 10.1130/G21724.1 18. Jakobsen JK, Veksler IV, Tegner C, Brooks CK (2011) Crystallization of the Skaergaard intrusion from an emulsion of immiscible iron- and silica-rich liquids: evidence from melt inclusions in plagioclase. J Pet 52:345–373 DOI: 10.1093/petrology/egq083 19. Kamenetsky VS, Charlier B, Zhitova L, Sharygin V, Davidson P, Feig S (2013) Magma chamber–scale liquid immiscibility in the Siberian traps represented by melt pools in native iron. Geology 41:1091–1094 DOI: 10.1130/G34638.1 20. Krasov NF, Clocchiatti R (1979) Immiscibility in silicate melts and its possible petrogenetic importance, as shown by study of melt inclusions (trans Doklady). USSR Acad Sci 248:92–95 21. Kyser TK, Lesher CE, Walker D (1998) The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contrib Miner Pet 133:373–381 DOI: 10.1007/s004100050459 22. Lester GW, Clark AH, Kyser TK, Naslund HR (2013) Experiments on liquid immiscibility in silicate melts with H2O, P, S, F, and Cl: Implications for natural magmas. Contrib Miner Pet 166:329–349 DOI: 10.1007/s00410-013-0878-1 23. Levin EM, Robbins CR, McMurdie HF (1964) Phase equilibria diagrams, vol 1. American Ceramic Society, Westerville 24. Longhi J (1990) Silicate liquid immiscibility in isothermal crystallization experiments. In: Lunar and planetary science conference proceedings, vol 20. Lunar and Planetary Institute, Houston, TX, pp 13–24 25. Mallmann G, O’Neill HC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J Pet 54:933–949 DOI: 10.1093/petrology/egt001 26. McBirney AR (2008) Comments on: ‘liquid immiscibility and the evolution of basaltic magma’ journal of petrology 48, 2187–2210. J Pet 49:2169–2170 DOI: 10.1093/petrology/egn062 27. Morse SA (2008) Compositional convection trumps silicate liquid immiscibilty in layered intrusions: a discussion of ‘liquid immiscibility and the evolution of basaltic magma’ by Veksler et al., journal of petrology 48, 2187–2210. J Pet 49:2157–2168 DOI: 10.1093/petrology/egn063 28. Mukhopadhyay B, Basu S, Holdaway MJ (1993) A discussion of Margules-type formulations for multicomponent solutions with a generalized approach. Geochim Cosmochim Acta 57:277–283 DOI: 10.1016/0016-7037(93)90430-5 29. Mysen BO, Ryerson FJ, Virgo D (1981) The structural role of phosphorus in silicate melts. Amer Miner 66:106–117 30. Naslund HR (1983) The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. Am J Sci 283:1034–1059 DOI: 10.2475/ajs.283.10.1034 31. Naslund HR, Watson EB (1977) The effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-CO2. Carnegie Inst Wash Year Book 76:410–414 32. Neal CR, Taylor LA (1989) The nature of Ba partitioning between immiscible melts: a comparison of experimental and natural systems with reference to lunar felsite petrogenesis. In: Lunar and planetary science conference, 19th, Houston, TX, Mar. 14–18, 1988, Proceedings (A89-36486 15-91). Cambridge/Houston, TX, Cambridge University Press/Lunar and Planetary Institute, 1989, pp 209–218 33. Pedersen AK (1985) Reaction between picrite magma and continental crust: tertiary silicic basalts and magnesian andesites from Disco West Greenland. Grønlands Geologiske Undersøgelse Bull (copenhagen) 152:126 34. Philpotts AR (1981) A model for the generation of massif-type anorthosites. Can Miner 19:233–253 35. Philpotts AR (1982) Compositions of immiscible liquids in volcanic rocks. Contrib Miner Pet 80:201–218 DOI: 10.1007/BF00371350 36. Philpotts AR (2008) Comments on: liquid immiscibility and the evolution of basaltic magma. J Pet 49:2171–2175 DOI: 10.1093/petrology/egn061 37. Philpotts AR, Doyle CD (1983) Effect of magma oxidation state on the extent of silicate liquid immiscibility in a tholeiitic basalt. Am J Sci 283(9):967–986 DOI: 10.2475/ajs.283.9.967 38. Roedder E (1951) Low-temperature liquid immiscibility in the system K2O-FeO-Al2O3-SiO2. Am Miner 36:282–286 39. Roedder E, Weiblen PW (1970) Lunar petrology of silicate melt inclusions, Apollo 11 rocks. Proc Apollo 11 Lun Sci Conf Geochim Cosmochim Acta 1(Suppl 1):507–528 40. Roedder E, Weiblen PW (1971) Petrology of silicate melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents. Proc 2nd Lunar Sci Conf Geochim Cosmochim Acta 1(Suppl 2):507–528 41. Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Pet 29:275–289 DOI: 10.1007/BF00371276 42. Ryerson FJ, Hess PC (1978) Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim Cosmochim Acta 42:921–932 DOI: 10.1016/0016-7037(78)90103-5 43. Schmidt MW, Connolly JAD, Günther D, Bogaerts M (2006) Element partitioning—the role of melt structure and composition. Science 312:1646–1650 DOI: 10.1126/science.1126690 44. Shearer CK, Papike JJ, Spilde MN (2001) Trace element partitioning between immiscible lunar melts: an example from naturally occurring lunar melt inclusions. Amer Miner 86:238–241 DOI: 10.2138/am-2001-2-305 45. Thompson AB, Aerts M, Hack AC (2007) Liquid immiscibility in silicate melts and related systems. In: Liebscher A, Heinrich CA (eds) Fluid-fluid interactions. Rev Mineral Geochem 65:99–127 DOI: 10.2138/rmg.2007.65.4 46. Tollari N, Toplis MJ, Barnes S-J (2006) Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature. Geochim Cosmochim Acta 70(6):1518–1536 DOI: 10.1016/j.gca.2005.11.024 47. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Pet 149:22–39 DOI: 10.1007/s00410-004-0629-4 48. Toplis MJ, Dingwell DB (1996) The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochim Cosmochim Acta 60(21):4107–4121 DOI: 10.1016/S0016-7037(96)00225-6 49. Veksler IV, Charlier B (2015) Silicate liquid immiscibility in layered intrusions. In: Namur O, Latypov R, Tegner C (eds) Charlier B. Layered intrusions Springer, Dordrecht, pp 229–258 50. Veksler IV, Dorfman AM, Danyushevsky LM, Jakobsen JK, Dingwell DB (2006) Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contrib Miner Pet 152:685–702 DOI: 10.1007/s00410-006-0127-y 51. Veksler IV, Dorfman AM, Borisov AA, Wirth R, Dingwell DB (2007) Liquid immiscibility and evolution of basaltic magma. J Pet 48:2187–2210 DOI: 10.1093/petrology/egm056 52. Veksler IV, Dorfman AM, Rhede D, Wirth R, Borisov AA, Dingwell DB (2008a) Liquid unmixing kinetics and the extent of immiscibility in the system K2O–CaO–FeO–Al2O3–SiO2. Chem Geol 256:119–130 DOI: 10.1016/j.chemgeo.2008.06.033 53. Veksler I, Dorfman A, Borisov AA, Wirth R, Dingwell DB (2008b) Liquid immiscibility and evolution of basaltic magma: reply to S. A. Morse, A. R. McBirney and A R Philpotts. J Pet 49:2177–2186 DOI: 10.1093/petrology/egn064 54. Veksler IV, Kahn J, Franz G, Dingwell DB (2010) Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing. Amer Miner 95:1679–1685 DOI: 10.2138/am.2010.3456 55. Vicenzi E, Green T, Sie S (1994) Effect of oxygen fugacity on trace-element partitioning between immiscible silicate melts at atmospheric pressure: a proton and electron microprobe study. Chem Geol 117:355–360 DOI: 10.1016/0009-2541(94)90137-6 56. Visser W, Koster van Groos AF (1979a) Phase relations in the system K2O-FeO-Al2O3-SiO2 at 1 atmosphere with special emphasis on low temperature liquid immiscibility. Am J Sci 279:70–91 DOI: 10.2475/ajs.279.1.70 57. Visser W, Koster van Groos AK (1979b) Effects of P2O5 and TiO2 on liquid-liquid equilibria in the system K2O-FeO-Al2O3-SiO2. Am J Sci 279:970–988 DOI: 10.2475/ajs.279.8.970 58. Visser WI, Koster van Groos AK (1979c) Effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-P2O5. Am J Sci 279:1160–1175 DOI: 10.2475/ajs.279.10.1160 59. Warren BE, Pincus AG (1940) Atomic consideration of immiscibility in glass systems. J Amer Ceram Soc 23(10):301–304 DOI: 10.1111/j.1151-2916.1940.tb14194.x 60. Watson EB (1976) Two-liquid partition coefficients: Experimental data and geochemical implications. Contrib Mineral Petrol 56:119–134 DOI: 10.1007/BF00375424 61. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. De Gruyter, Berlin, pp 311–408 DOI: 10.1515/9781501508394-009