Цитирование: | 1. Århammar, C., Araújo, C.M., Ahuja, R., Energetics of Al doping and intrinsic defects in monoclinic and cubic zirconia: first-principles calculations. Phys. Rev. B, 80, 2009, 115208, 10.1103/PhysRevB.80.115208 http://link.aps.org/doi/10.1103/PhysRevB.80.115208.
2. Aarik, J., Mändar, H., Kirm, M., Spectroscopic characterization of ZrO2 thin films grown by atomic layer deposition. Proc. Estonian Acad. Sci. Phys. Math. 52:3 (2003), 289–298.
3. Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., Imanishai, N., Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system. Solid State Ion. 121:1–4 (1999), 133–139, 10.1016/s0167-2738(98)00540-2.
4. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., Seryakov, S.V., Tabachkova, N.Y., Phase composition, structure and properties of (ZrO2)1−x−y(Sc2O3)x(Y2O3)y solid solution crystals (x=0.08–0.11; y=0.01–0.02) grown by directional crystallization of the melt. J. Cryst. Growth 457 (2017), 122–127, 10.1016/j.jcrysgro.2016.06.039.
5. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., Tabachkova, N.Y., Volkova, T.V., The impact of structural changes in ZrO2−Y2O3 solid solution crystals grown by directional crystallization of the melt on their transport characteristics. Mater. Lett. 205 (2017), 186–189, 10.1016/j.matlet.2017.06.059.
6. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, P.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., Tabachkova, N.Y., Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting. J. Am. Ceram. Soc. 100 (2017), 5536–5547, 10.1111/jace.15074.
7. Borik, M.A., Bredikhin, S.I., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Panov, V.A., Ryabochkina, P.A., Seryakov, S.V., Tabachkova, N.Y., Melt growth, structure and properties of (ZrO2)1−x(Sc2O3)x solid solution crystals (x=0.035–0.11). J. Cryst. Growth 443 (2016), 54–61, 10.1016/j.jcrysgro.2016.03.004.
8. Chabushkin, A.N., Lyapin, A.A., Ryabochkina, P.A., Antipov, O.L., Artemov, S.A., Lomonova, E.E., CW and Q-switched 2μm solid-state laser on ZrO2–Y2O3–HO2O3 crystals pumped by a Tm fiber laser. Laser Phys., 28(3), 2018, 035803, 10.1088/1555-6611/aa962f.
9. Foster, A.S., Sulimov, V.B., Gejo, F.L., Shluger, A.L., Nieminen, R.M., Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B, 64, 2001, 224108, 10.1103/PhysRevB.64.224108 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.64.224108.
10. Furetta, C., Handbook of Thermoluminescence. 2003, World Scientific https://www.ebook.de/de/product/3822187/furetta_claudio_handbook_of_thermoluminescence.html.
11. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A.D., de Gironcoli, S., Delugas, P., DiStasio, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Kücükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.-V., Roza, A.O.-d.l., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter, 29(46), 2017, 465901, 10.1088/1361-648x/aa8f79.
12. Gritsenko, V.A., Islamov, D.R., Perevalov, T.V., Aliev, V.S., Yelisseyev, A.P., Lomanova, E.E., Pustovarov, V.A., Chin, A., The oxygen vacancy in Hafnia as a blue luminescence center and a trap of charge carriers. J. Phys. Chem. C 120 (2016), 19980–19986, 10.1021/acs.jpcc.6b05457 http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b05457.
13. Gritsenko, V.A., Perevalov, T.V., Islamov, D.R., Electronic properties of hafnium oxide: a contribution from defects and traps. Phys. Rep. 613 (2016), 1–20, 10.1016/j.physrep.2015.11.002.
14. Hamann, D.R., Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B, 88, 2013, 085117, 10.1103/physrevb.88.085117.
15. Hamann, D.R., Erratum: optimized norm-conserving vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B, 95, 2017, 239906, 10.1103/physrevb.95.239906.
16. Hintersehr, J. (1997). Process for Producing Dental Prostheses. http://www.google.com/patents/US5702650.
17. Hur, J.-H., Park, S., Chung, U.I., First principles study of oxygen vacancy states in monoclinic ZrO2: interpretation of conduction characteristics. J. Appl. Phys., 112(11), 2012, 113719, 10.1063/1.4768894.
18. Islamov, D.R., Gritsenko, V.A., Kruchinin, V.N., Ivanova, E.V., Zamoryanskaya, M.V., Lebedev, M.S., The evolution of the conductivity and cathodoluminescence of the films of hafnium oxide in the case of a change in the concentration of oxygen vacancies. Phys. Solid State 60:10 (2018), 2050–2057, 10.1134/s1063783418100098.
19. Islamov, D.R., Gritsenko, V.A., Perevalov, T.V., Aliev, V.S., Nadolinny, V.A., Chin, A., Oxygen vacancies in zirconium oxide as the blue luminescence centresand traps responsible for charge transport: Part II — films. Materialia, 2020 (Accepted in Materialia as MTLA_100980).
20. Islamov, D.R., Gritsenko, V.A., Perevalov, T.V., Pustovarov, V.A., Orlov, O.M., Chernikova, A.G., Markeev, A.M., Slesazeck, S., Schroeder, U., Mikolajick, T., Krasnikov, G.Y., Identification of the nature of traps involved in the field cycling of Hf0.5Zr0.5O2-based ferroelectric thin films. Acta Mater. 166 (2019), 47–55, 10.1016/j.actamat.2018.12.008 https://www.sciencedirect.com/science/article/pii/S1359645418309509.
21. Ito, T., Kato, H., Ohki, Y., Mechanisms of several photoluminescence bands in hafnium and zirconium silicates induced by ultraviolet photons. J. Appl. Phys., 99, 2006, 094106, 10.1063/1.2199977.
22. Ito, T., Maeda, M., Nakamura, K., Kato, H., Ohki, Y., Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons. J. Appl. Phys., 97(5), 2005, 054104, 10.1063/1.1856220.
23. Ivanova, E.V., Zamoryanskaya, M.V., Pustovarov, V.A., Aliev, V.S., Gritsenko, V.A., Yelisseyev, A.P., Cathodo- and photoluminescence rise in amorphous hafnium oxide at annealing in oxygen. JETP 120:4 (2015), 710–715, 10.1134/S1063776115020132.
24. Kitis, G., Gomez-Ros, J.M., Tuyn, J.W.N., Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D: Appl. Phys. 31:19 (1998), 2636–2641, 10.1088/0022-3727/31/19/037.
25. Kokalj, A., XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17:3-4 (1999), 176–179, 10.1016/s1093-3263(99)00028-5.
26. Kuz'minov, Y.S., Lomonova, E.E., Osiko, V.V., Cubic Zirconia and Skull Melting. 2008, Cambridge International Science Publishing Ltd https://www.ebook.de/de/product/5273548/yurii_sergeevich_kuz_minov_elena_evgen_evna_lomonova_vyacheslav_vasil_evich_osiko_cubic_zirconia_and_skull_melting.html.
27. Mehta, D., Shetty, R., Bonding to zirconia: elucidating the confusion. Int. Dent. S. Afr., 12(2), 2010, 46.
28. Osiko, V.V., Lomonova, E.E., Multifunctional materials based on nanostructured partially stabilized zirconia crystals. Herald Russian Acad. Sci. 82:5 (2012), 373–382, 10.1134/s1019331612050036.
29. Perevalov, T.V., Aliev, V.S., Gritsenko, V.A., Saraev, A.A., Kaichev, V.V., Ivanova, E.V., Zamoryanskaya, M.V., The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide. Appl. Phys. Lett., 104, 2014, 071904, 10.1063/1.4865259.
30. Perevalov, T.V., Gulyaev, D.V., Aliev, V.S., Zhuravlev, K.S., Gritsenko, V.A., Yelisseyev, A.P., The origin of 2.7 eV blue luminescence band in zirconium oxide. J. Appl. Phys., 116, 2014, 244109, 10.1063/1.4905105.
31. Perevalov, T.V., Islamov, D.R., Atomic and electronic structure of oxygen polyvacancies in ZrO2. Microelectron. Eng. 178 (2017), 275–278, 10.1016/j.mee.2017.05.036 http://www.sciencedirect.com/science/article/pii/S0167931717302332.
32. Perevalov, T.V., Islamov, D.R., Oxygen polyvacancies as conductive filament in zirconia: first principle simulation. ECS Trans. 80 (2017), 357–362, 10.1149/08001.0357ecst http://ecst.ecsdl.org/content/80/1/357.
33. Pezzotti, G., Porporati, A.A., Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints. J. Biomed. Opt., 9(2), 2004, 372.
34. Rastorguev, A.A., Belyi, V.I., Smirnova, T.P., Yakovkina, L.V., Zamoryanskaya, M.V., Gritsenko, V.A., Wong, H., Luminescence of intrinsic and extrinsic defects in hafnium oxide films. Phys. Rev. B, 76, 2007, 235315, 10.1103/PhysRevB.76.235315.
35. Ryabochkina, P.A., Borik, M.A., Kulebyakin, A.V., Lomonova, E.E., Malov, A.V., Somov, N.V., Ushakov, S.N., Chabushkin, A.N., Chuprunov, E.V., Structure and spectral-luminescence properties of yttrium-stabilized zirconia crystals activated with Tm3+ ions. Optics Spectrosc. 112:4 (2012), 594–600, 10.1134/s0030400x12030174.
36. Singh, F., Rawat, M., Gautam, S.K., Ojha, S., Micro-raman investigations on zirconium oxide film during swift heavy ion irradiation to study crystalline-to-crystalline phase transformation kinetics by cascade overlap model. J. Appl. Phys., 126, 2019.
37. Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Grabis, J., Lojkowski, W., Intrinsic defect related luminescence in ZrO2. J. Lumin. 131:10 (2011), 2058–2062, 10.1016/j.jlumin.2011.05.018 http://www.sciencedirect.com/science/article/pii/S0022231311002808.
|