Инд. авторы: Jiang J.W., Meng B.W., Liu H., Wang H.Y., Kolpakova M.N, Krivonogov S.K., Song M., Zhou A.F., Liu W.G., Liu Z.H.
Заглавие: Water depth control on n-alkane distribution and organic carbon isotope in mid-latitude Asian lakes
Библ. ссылка: Jiang J.W., Meng B.W., Liu H., Wang H.Y., Kolpakova M.N, Krivonogov S.K., Song M., Zhou A.F., Liu W.G., Liu Z.H. Water depth control on n-alkane distribution and organic carbon isotope in mid-latitude Asian lakes // Chemical Geology. - 2021. - Vol.565. - Art.120070. - ISSN 0009-2541. - EISSN 1878-5999.
Внешние системы: DOI: 10.1016/j.chemgeo.2021.120070; РИНЦ: 44976715; WoS: 000627419100004;
Реферат: eng: The relative proportion of mid-chain to long chain n-alkane homologues and isotopic compositions of total organic carbon (P-aq and delta C-13(org)) have been proposed as potential lake-level proxies since such features mainly come from submerged aquatic plants living within an optimum range of lake water depth. With limited dataset available, the applicability of both indices and their sensitivity to lake water depth changes across a broad geographic extent need further investigation. Here we report P-aq and delta C-13(org) values in surface sediments collected from 55 lakes in mid-latitude Asia. We have found an arched relationship between P-aq index and water depth, with high Paq values occurring at the depth of similar to 1-10 m, while sediments from shallower and deeper water lakes have relatively low P-aq values. delta C-13(org) variation resembles an arched pattern with depth in freshwater and brackish lakes, with relatively high delta C-13(org) values also corresponding to the depth of similar to 1-10 m, but substantially high delta C-13(org) values in hypersaline environments (salinity > similar to 100,000 mg/L) obscure the arched delta C-13(org)-depth relationship. We suggest that both indices respond to the structure of aquatic plant community, especially the biomass of submerged plants. Our results confirm that P-aq and delta C-13(org) can be used to infer lake-level changes in mid-latitude Asia, but other influencing factors have to be considered before applying the two proxies to downcore reconstructions, and combined utilization of the P-aq and delta C-13(org) indicators could improve the reliability of paleohydrological reconstructions.
Ключевые слова: Organic carbon isotope; Submerged plants; Lake level; Mid-latitude Asia; P-aq;
Издано: 2021
Физ. характеристика: 120070
Цитирование: 1. Aichner, B., Herzschuh, U., Wilkes, H., Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Org. Geochem. 41 (2010), 706–718. 2. Aichner, B., Wilkes, H., Herzschuh, U., Mischke, S., Zhang, C., Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau. J. Paleolimnol. 43 (2010), 873–899. 3. Aichner, B., Herzschuh, U., Wilkes, H., Schulz, H.M., Wang, Y., Plessen, B., Mischke, S., Diekmann, B., Zhang, C., Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313 (2012), 140–149. 4. Aichner, B., Ott, F., Słowiński, M., Noryśkiewicz, A.M., Brauer, A., Sachse, D., Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay. Clim. Past 14 (2018), 1607–1624. 5. Askarova, M., Medeu, A., Medeu, A., Arslan, M., Assessment of the Current Plant Diversity Status in Kazakhstan. Egamberdieva, D., Öztürk, M., (eds.) Vegetation of Central Asia and Environs, 2018, Springer, Cham, 303–320. 6. Bray, E.E., Evans, E.D., Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22 (1961), 2–15. 7. Castañeda, I.S., Schouten, S., A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quat. Sci. Rev. 30 (2011), 2851–2891. 8. Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., Zhang, X., An, C., Zhang, J., Zhao, Y., Yu, Z., Zhang, R., Liu, J., Zhou, A., Feng, S., Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth Sci. Rev. 192 (2019), 337–354. 9. Chen, F., Welker, F., Shen, C.C., Bailey, S.E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, B., Freidline, S.E., Yu, T.L., Stelzer, S., Dong, G., Fu, Q., Dong, G., Wang, J., Zhang, D., Hublin, J.J., A late middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569 (2019), 409–412. 10. Chlachula, J., The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-Central Asia. Quat. Sci. Rev. 22 (2003), 1879–1906. 11. Cranwell, P.A., Lipid geochemistry of sediments from Upton Broad, a small productive lake. Org. Geochem. 7 (1984), 25–37. 12. Diefendorf, A.F., Freimuth, E.J., Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org. Geochem. 103 (2017), 1–21. 13. Doi, H., Kikuchi, E., Mizota, C., Satoh, N., Shikano, S., Yurlova, N., Yadrenkina, E., Zuykova, E., Carbon, nitrogen, and sulfur isotope changes and hydro-geological processes in a saline lake chain. Hydrobiologia 529 (2004), 225–235. 14. Edwards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., C4 Grasses Consortium, The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328 (2010), 587–591. 15. Eley, Y.L., Hren, M.T., Reconstructing vapor pressure deficit from leaf wax lipid molecular distributions. Sci. Rep., 8, 2018, 3967. 16. Ficken, K.J., Li, B., Swain, D.L., Eglinton, G., An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 31 (2000), 745–749. 17. Freimuth, E.J., Diefendorf, A.F., Lowell, T.V., Bates, B.R., Schartman, A., Bird, B.W., Landis, J.D., Stewart, A.K., Contrasting sensitivity of lake sediment n-alkanoic acids and n-alkanes to basin-scale vegetation and regional-scale precipitation δ2H in the Adirondack Mountains, NY (USA). Geochim. Cosmochim. Acta 268 (2020), 22–41. 18. Garcin, Y., Schwab, V.F., Gleixner, G., Kahmen, A., Todou, G., Séné, O., Onana, J., Achoundong, G., Sachse, D., Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: insights from a calibration transect across Cameroon. Geochim. Cosmochim. Acta 79 (2012), 106–126. 19. Garcin, Y., Schefuß, E., Schwab, V.F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J., Achoundong, G., Sachse, D., Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142 (2014), 482–500. 20. He, Y., Zheng, Y., Pan, A., Zhao, C., Sun, Y., Song, M., Zheng, Z., Liu, Z., Biomarker-based reconstructions of Holocene lake-level changes at Lake Gahai on the northeastern Tibetan Plateau. The Holocene 24 (2014), 405–412. 21. He, Y., Wang, H., Meng, B., Liu, H., Zhou, A., Song, M., Kolpakova, M., Krivonogov, S., Liu, W., Liu, Z., Appraisal of alkenone- and archaeal ether-based salinity indicators in mid-latitude Asian lakes. Earth Planet. Sci. Lett., 538, 2020, 116236. 22. Herrera-Herrera, A.V., Leierer, L., Jambrina-Enríquez, M., Connolly, R., Mallol, C., Evaluating different methods for calculating the Carbon Preference Index (CPI): implications for palaeoecological and archaeological research. Org. Geochem., 146, 2020, 104056. 23. Herzschuh, U., Mischke, S., Meyer, H., Plessen, B., Zhang, C., Using variations in the stable carbon isotope composition of macrophyte remains to quantify nutrient dynamics in lakes. J. Paleolimnol. 43 (2010), 739–750. 24. Hockun, K., Mollenhauer, G., Ho, S.L., Hefter, J., Ohlendorf, C., Zolitschka, B., Mayr, C., Lücke, A., Schefuß, E., Using distributions and stable isotopes of n-alkanes to disentangle organic matter contributions to sediments of Laguna Potrok Aike, Argentina. Org. Geochem. 102 (2016), 110–119. 25. Holtvoeth, J., Whiteside, J.H., Engels, S., Freitas, F.S., Grice, K., Greenwood, P., Johnson, S., Kendall, I., Lengger, S.K., Lücke, A., Mayr, C., Naafs, B.D.A., Rohrssen, M., Sepúlveda, J., The paleolimnologist's guide to compound-specific stable isotope analysis – An introduction to principles and applications of CSIA for Quaternary lake sediments. Quat. Sci. Rev. 207 (2019), 101–133. 26. Jiang, Q., Shen, J., Liu, X., Ji, J., Environmental changes recorded by lake sediments from Lake Jili, Xinjiang during the past 2500 years. J. Lake Sci. 22 (2010), 119–126 (in Chinese with English abstract). 27. Jones, J.I., Young, J.O., Eaton, J.W., Moss, B., The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J. Ecol. 90 (2002), 12–24. 28. Leng, M.J., Marshall, J.D., Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat. Sci. Rev. 23 (2004), 811–831. 29. Li, X., Zhou, X., Liu, W., Wang, Z., He, Y., Xu, L., Carbon and oxygen isotopic records from Lake Tuosu over the last 120 years in the Qaidam Basin, Northwestern China: the implications for paleoenvironmental reconstruction. Glob. Planet. Chang. 141 (2016), 54–62. 30. Li, X., Liu, W., Xu, L., Evaluation of lacustrine organic δ13C as a lake-level indicator: a case study of Lake Qinghai and the satellite lakes on the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 532, 2019, 109274. 31. Liu, H., Liu, W., n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau. Org. Geochem. 99 (2016), 10–22. 32. Liu, W., Li, X., An, Z., Xu, L., Zhang, Q., Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China. Chem. Geol. 347 (2013), 153–160. 33. Liu, Z., Zhang, K., Sun, Y., Liu, W., Liu, Y., Quan, C., Cenozoic environmental changes in the northern Qaidam Basin inferred from n-alkane records. Acta Geologica Sinica (English Edition) 88 (2014), 1547–1555. 34. Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., Leng, Q., Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: a dual indicator of paleoenvironment in the Qinghai–Tibet Plateau. Org. Geochem. 83–84 (2015), 190–201. 35. Long, H., Lai, Z., Wang, N., Li, Y., Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China. Quat. Res. 74 (2010), 46–56. 36. Lücke, A., Schleser, G.H., Zolitschka, B., Negendank, J.F.W., A Late glacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved Lake sediments of Lake Holzmaar, Germany. Quat. Sci. Rev. 22 (2003), 569–580. 37. Maberly, S.C., Madsen, T.V., Freshwater angiosperm carbon concentrating mechanisms: process and patterns. Funct. Plant Biol. 29 (2002), 393–405. 38. Mackay, A.W., Bezrukova, E.V., Leng, M.J., Meaney, M., Nunes, A., Piotrowska, N., Self, A., Shchetnikov, A., Shilland, E., Tarasov, P., Wang, L., White, D., Aquatic ecosystem responses to Holocene climate change and biome development in boreal, Central Asia. Quat. Sci. Rev. 41 (2012), 119–131. 39. Magny, M., Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat. Int. 113 (2004), 65–79. 40. Marzi, R., Torkelson, B.E., Olson, R.K., A revised carbon preference index. Org. Geochem. 20 (1993), 1303–1306. 41. Mead, R., Xu, Y., Chong, J., Jaffé, R., Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org. Geochem. 36 (2005), 363–370. 42. Meyers, P.A., Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114 (1994), 289–302. 43. Meyers, P.A., Ishiwatari, R., Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20 (1993), 867–900. 44. Nichols, J.E., Walcott, M., Bradley, R., Pilcher, J., Huang, Y., Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quat. Res. 72 (2009), 443–451. 45. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., Kassem, K.R., Terrestrial Ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51 (2001), 933–938. 46. Ortiz, J.E., Moreno, L., Torres, T., Vegas, J., Ruiz-Zapata, B., García-Cortés, Á., Galán, L., Pérez-González, A., A 220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis. Org. Geochem. 55 (2013), 85–97. 47. Peel, M.C., Finlayson, B.L., Mcmahon, T.A., Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 4, 2007, 439–473. 48. Qiang, M., Song, L., Chen, F., Li, M., Liu, X., Wang, Q., A 16-ka Lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai–Tibetan Plateau (China). J. Paleolimnol. 49 (2013), 575–590. 49. Rao, Z., Qiang, M., Jia, G., Li, Y., Dan, D., Chen, F., A 15 ka Lake water δD record from Genggahai Lake, northeastern Tibetan Plateau, and its paleoclimatic significance. Org. Geochem. 97 (2016), 5–16. 50. Rea, T.E., Karapatakis, D.J., Guy, K.K., Pinder, J.E. III, Mackey, H.E. Jr., The relative effects of water depth, fetch and other physical factors on the development of macrophytes in a small southeastern US pond. Aquat. Bot. 61 (1998), 289–299. 51. Reich, D., Green, R.E., Kircher, M., Krause, J., Patterson, N., Durand, E.Y., Viola, B., Maricic, T., Good, J.M., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E.E., Stoneking, M., Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 2010, 1053. 52. Sayer, C.D., Davidson, T.A., Jones, J.I., Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton?. Freshw. Biol. 55 (2010), 500–513. 53. Schwark, L., Zink, K., Lechterbeck, J., Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30 (2002), 463–466. 54. Sheldon, R.B., Boylen, C.W., Maximum depth inhabited by aquatic vascular plants. Am. Midl. Nat. 97 (1977), 248–254. 55. Shen, J., Liu, X., Wang, S., Matsumoto, R., Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat. Int. 136 (2005), 131–140. 56. Sinninghe Damsté, J.S., Verschuren, D., Ossebaar, J., Blokker, J., van Houten, R., van der Meer, M.T.J., Plessen, B., Schouten, S., A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth Planet. Sci. Lett. 302 (2011), 236–246. 57. Still, C.J., Berry, J.A., Collatz, G.J., DeFries, R.S., Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob. Biogeochem. Cycles, 17, 2003 6–1. 58. Sun, B., Yue, L., Lai, Z., Liu, W., Paleoclimate change recorded by sediment organic carbon isotopes of Lake Barkol since 14 ka B.P. Quat. Sci. 34 (2014), 418–424 (in Chinese with English abstract). 59. Sun, W., Zhang, E., Jones, R.T., Liu, E., Shen, J., Biogeochemical processes and response to climate change recorded in the isotopes of lacustrine organic matter, southeastern Qinghai-Tibetan Plateau, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 453 (2016), 93–100. 60. Touchette, B.W., Burkholder, J.M., Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 250 (2000), 169–205. 61. Verhoeven, J.T.A., The ecology of Ruppia-dominated communities in Western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquat. Bot. 6 (1979), 197–267. 62. Wang, S., Dou, H., Chinese Lakes. first ed., 1998, Science Press, Beijing (in Chinese). 63. Wang, L., Mackay, A.W., Leng, M.J., Rioual, P., Panizzo, V.N., Lu, H., Gu, Z., Chu, G., Han, J., Kendrick, C.P., Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ13C from Erlongwan maar lake, Northeast China. Org. Geochem. 54 (2013), 62–68. 64. Wang, H., He, Y., Liu, W., Zhou, A., Kolpakova, M., Krivonogov, S., Liu, Z., Lake water depth controlling archaeal tetraether distributions in midlatitude Asia: Implications for paleo lake-level reconstruction. Geophys. Res. Lett. 46 (2019), 5274–5283. 65. Wu, J., Liu, J., Wang, S., Climatic change recorded from stable isotopes in Lake Aibi, Xinjiang during the past 1500 years. Quat. Sci. 24 (2004), 585–590 (in Chinese with English abstract). 66. Xu, H., Ai, L., Tan, L., An, Z., Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem. Geol. 235 (2006), 262–275. 67. Yu, Z., Wang, X., Zhao, C., Lan, H., Source characterization of organic carbon using elemental, isotopic and n-alkanes proxies in surface sediment from Lake Bosten, Xinjiang. J. Lake Sci. 27 (2015), 983–990 (in Chinese with English abstract). 68. Zhang, E., Shen, J., Xia, W., Zhu, Y., Wang, S., Environmental records from organic carbon and its isotope of Qinghai Lake sediment. Marine Geol. Quatern. Geol. 22 (2002), 105–108 (in Chinese with English abstract). 69. Zhang, C., Chen, F., Jin, M., Study on modern plant 13C in western China and its significance. Chin. J. Geochem. 22 (2003), 97–106. 70. Zhao, C., Yu, Z., Zhao, Y., Ito, E., Possible orographic and solar controls of Late Holocene centennial-scale moisture oscillations in the northeastern Tibetan Plateau. Geophys. Res. Lett., 36, 2009, L21705. 71. Zhilich, S.V., Krivonogov, S.K., Gavrilov, D.A., Rudaya, N.A., Climate and lake development history in the south of West Siberia. Limnol. Freshwater Biol. 4 (2020), 538–540.