Инд. авторы: Sokol E.V., Deviatiiarova A.S., Kokh S.N., Reutsky V.N., Abersteiner A., Philippova K.A., Artemyev D.A.
Заглавие: Sulfide Minerals as Potential Tracers of Isochemical Processes in Contact Metamorphism: Case Study of the Kochumdek Aureole, East Siberia
Библ. ссылка: Sokol E.V., Deviatiiarova A.S., Kokh S.N., Reutsky V.N., Abersteiner A., Philippova K.A., Artemyev D.A. Sulfide Minerals as Potential Tracers of Isochemical Processes in Contact Metamorphism: Case Study of the Kochumdek Aureole, East Siberia // MINERALS. - 2021. - Vol.11. - Iss. 1. - Art.17.
Внешние системы: DOI: 10.3390/min11010017; РИНЦ: 45030779; WoS: 000610598300001;
Реферат: eng: Marly limestones from the Lower Silurian sedimentary units of the Tunguska basin (East Siberia, Russia) underwent metamorphism along the contact with the Early Triassic Kochumdek trap intrusion. At <= 2.5 m from the contact, the limestones were converted into ultrahigh-temperature marbles composed of pure calcite and sulfide-bearing calcsilicate layers. The sulfide assemblages in the gabbro and marbles were studied as potential tracers of spurrite-merwinite facies alteration. The gabbro-hosted sulfides show Fe-Ni-Cu-Co speciation (pyrrhotite and lesser amounts of chalcopyrite, pentlandite, and cobaltite) and positive delta S-34 values (+2.7 to +13.1 parts per thousand). Both matrix and inclusion sulfide assemblages of prograde melilite, spurrite, and merwinite marbles consist dominantly of pyrrhotite and minor amounts of troilite, sphalerite, wurtzite, alabandite, acanthite, and galena. In contrast to its magmatic counterpart, metamorphic pyrrhotite is depleted in Cu (3-2000 times), Ni (7-800 times), Se (20-40 times), Co (12 times), and is isotopically light (about -25 parts per thousand delta S-34). Broad solid solution series of (Zn,Fe,Mn)S-cub, (Zn,Mn,Fe)S-hex, and (Mn,Fe)S-cub indicate that the temperature of contact metamorphism exceeded 850-900 degrees C. No metasomatism or S isotope resetting signatures were detected in the prograde mineral assemblages, but small-scale penetration of magma-derived K- and Cl-rich fluids through more permeable calcsilicate layers was documented based on the distribution of crack-filling Fe-K sulfides (rasvumite, djerfisherite, and bartonite).
Ключевые слова: sulfur isotope; trace elements; Zn-Fe-Mn sulfides; pyrrhotite; marble; contact metamorphism; Fe-K sulfides; spurrite-merwinite facies;
Издано: 2021
Физ. характеристика: 17
Цитирование: 1. Reverdatto, V.V. Facies of Contact Metamorphism; Nedra: Moscow, Russia, 1970; p. 271. 2. Pertsev, N.N. High-Temperature Metamorphism and Metasomatism of Carbonate Rocks; Nauka: Moscow, Russia, 1977. 3. Kerrick, D.M. Contact metamorphism. Mineral. Soc. Am. 1991, 26, 847. 4. Grapes, R. Pyrometamorphism; 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011; p. 365. 5. Bucher, K.; Grapes, R. Petrogenesis of Metamorphic Rocks; Springer: Berlin/Heidelberg, Germany, 2011; p. 428. 6. Gieré, R. Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: Implications for mobility of Ti, Zr and REE. Contrib. Miner. Pet. 1986, 93, 459–470. 7. Spear, F.S.; Pyle, J.M. Apatite, monazite, and xenotime in metamorphic rocks. Rev. Mineral. Geochem. 2002, 48, 293–335. 8. Valley, J.W. Stable isotope thermometry at high temperatures. Mineral. Soc. Amer. 2001, 43, 365–413. 9. Khoury, H.; Sokol, E.; Clark, I. Calcium uranium oxides from Central Jordan: Mineral assemblages, chemistry, and alteration products. Can. Min. 2015, 53, 61–82. 10. Khoury, H.N.; Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Nigmatulina, E.N.; Goryainov, S.V.; Belogub, E.V.; Clark, I.D. Tululite, Ca14(Fe3+, Al)(Al, Zn, Fe3+, Si, P, Mn, Mg)15O36: A new Ca zincate-aluminate from combustion metamorphic marbles, Central Jordan. Mineral. Petrol. 2016, 110, 125–140. 11. Galuskin, E.V.; Gazeev, V.M.; Armbruster, T.; Zadov, A.E.; Galuskina, I.O.; Pertsev, N.N.; Dzierzanovski, P.; Kadiyski, M.; Gurbanov, A.G.; Wrzalik, R.; et al. Lakargiite CaZrO3: A new mineral of the perovskite group from the Northern Caucasus, Kabardino-Balkaria, Russia. Am. Miner. 2008, 93, 1903–1910. 12. Galuskina, I.O.; Galuskin, E.V.; Armbruster, T.; Lazic, B.; Kusz, J.; Dzierzanowski, P.; Gazeev, V.M.; Pertsev, N.N.; Prusik, K.; Zadov, A.E.; et al. Elbrusite-(Zr)—A new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Cau-casus, Russia. Am. Mineral. 2010, 95, 1172–1181. 13. Galuskin, E.V.; Armbruster, T.; Galuskina, I.O.; Lazic, B.; Winiarski, A.; Gazeev, V.M.; Dzierzanowski, P.; Zadov, A.E.; Pertsev, N.N.; Wrzalik, R.; et al. Vorlanite (CaU6+)O4—A new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. Am. Miner. 2011, 96, 188–196. 14. Gazeev, V.M.; Gurbanova, O.A.; Zadov, E.A.; Gurbanov, A.G.; Leksin, A.B. Mineralogy of skarn limy xenoliths of Shadil-hoh volcano (Kel volcanic area of the Great Caucasus). Vestnik Vladikavkazskogo Nauchnogo Tsentra 2012, 2, 23–33. 15. Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Miner. 2013, 98, 785–811. 16. Hermann, J.; Rubatto, D.; Korsakov, A.V.; Shatsky, V.S. The age of metamorphism of diamondiferous rocks determined with shrimp dating of zircon. Russ. Geol. Geophys. 2006, 47, 511–518. 17. Green, T.H.; Hellman, P.L. Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos 1982, 15, 253–266. 18. Hermann, J.; Rubatto, D. Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. J. Metamorph. Geol. 2003, 21, 833–852. 19. Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Pet. 2006, 151, 413. 20. Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. 21. Parat, F.; Dungan, M.A.; Streck, M.J. Anhydrite, pyrrhotite, and sulfurrichapatite: Tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CO, USA). Lithos 2002, 64, 63–75. 22. Britvin, S.N.; Bogdanova, A.N.; Boldyreva, M.M.; Aksenova, G.Y. Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure. Am. Miner. 2008, 93, 902–909. 23. Marks, M.A.W.; Wenzel, T.; Whitehouse, M.J.; Loose, M.; Zack, T.; Barth, M.; Worgard, L.; Krasz, V.; Eby, G.N.; Stosnach, H.; et al. The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chem. Geol. 2012, 291, 241–255. 24. Barton, P.B. Sulfide petrology. Mineral. Soc. Am. Rev. Mineral. 1974, 1, B1–B11. 25. Slotznick, S.P.; Eiler, J.M.; Fischer, W.W. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochim. Cosmochim. Acta. 2018, 224, 96–115. 26. Vaughan, D.J. Sulfide mineralogy and geochemistry. Mineral. Soc. Amer. 2006, 61, 714. 27. Brown, J.L.; Christy, A.G.; Ellis, D.J.; Arculus, R.J. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia. J. Pet. 2014, 55, 643–670. 28. Robert, R. Seal II. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. 29. Reverdatto, V.V. High-temperature contact metamorphism of limestones in the Podkamennaya Tunguska basin. Dokl. Earth Sci. USSR. 1964, 155, 104–107. 30. Sokol, E.V.; Polyansky, O.P.; Semenov, A.N.; Reverdatto, V.V.; Kokh, S.N.; Devyatiyarova, A.S.; Kolobov, V.Y.; Khvorov, P.V.; Babichev, A.V. High-grade contact metamorphism in the Kochumdek River valley (Podkamennaya Tunguska basin, East Sibe-ria): Evidence for magma flow. Russ. Geol. Geophys. 2019, 60, 386–399. 31. Deviatiiarova, A.S. Potassium Ssulfides in Spurrite Marbles from the Kochumdek River. In Proceeding of the 55 International Scientific Student Conference, Novosibirsk, Russia, 17–20 April 2017; pp. 88. 32. Deviatiiarova, A.S. Specific Sulfide Mineralization in Spurrite Marbles from the Kochumdek Contact Aureole (Podkamennaya Tunguska basin). In Proceeding of the XXIIIrd Scientific Youth School “Metallogeny of Ancient and Modern Oceans–2017. Dif-ferentiation and Reasons of Diversity of Ore Deposits”, Miass, Russia, 24–28 April 2017; pp. 229–232. 33. Golovin, A.V.; Goryainov, S.V.; Kokh, S.N.; Sharygin, I.S.; Rashchenko, S.V.; Kokh, K.A.; Devyatiyarova, A.S.; Sokol, E.V. The application of raman spectroscopy to djerfisherite identification. J. Raman Spectrosc. 2017, 48, 1574–1582. 34. Sokol, E.V.; Deviatiiarova, A.S.; Kokh, S.N.; Reverdatto, V.V.; Artemyev, D.A.; Kolobov, V.Yu. Sulfide mineralization hosted by spurrite-mervinite marbles (Kochumdek River, East Siberia). Dokl. Earth Sci. 2019, 489, 1326–1329. 35. Deviatiiarova, A.S.; Artemyev, D.A.; Abersteiner, A.; Sokol, E.V. Isotope-Geochemical Characteristics of Sulfides in Spurrite Marbles from the Kochumdek River (Podkamennaya Tunguska basin). In Proceedings of the Professor, V.V. Zaykov XXVIth Scientific Youth School “Metallogeny of Ancient and Modern Oceans–2020. Critical Metals in Ore-Forming Systems”, Miass, Russia, 22 April 2020; pp. 205–209. 36. Malich, N.S.; Grigoriev, V.V. Correlation of Magmatism and Tectonics in the lower Podkamennaya Tunguska and Bakhta River Basins. In Geology and Mineral Resources in the Siberian Craton; VSEGEI: Leningrad, Russia, 1960; pp. 27–36. 37. Vasil'ev, Y.R.; Zolotukhin, V.V.; Feoktistov, G.D.; Prusskaya, S.N. Evaluation of the volumes and genesis of Permo-Triassic trap magmatism on the Siberian platform. Russ. Geol. Geophys. 2000, 41, 1696–1705. 38. Dobretsov, N.L.; Kirdyashkin, A.A.; Kirdyashkin, A.G.; Vernikovsky, V.A.; Gladkov, I.N. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 2008, 100, 66–92. 39. Dobretsov, N.L. 250 Ma large igneous provinces of Asia: Siberian and emeishan traps (plateau basalts) and associated granit-oids. Russ. Geol. Geophys. 2005, 9, 847–868. 40. Zolotukhin, V.V.; Al’mukhamedov, A.I. Basalts of the Siberian platform: Distribution, Mineral Composition, and Mechanism of Formation. In Traps of Siberia and Deccan: Similarities and Differences; Polyakov, G.V., Ed.; Nauka: Novosibirsk, Russia, 1991; p. 7–39. 41. Prusskaya, S.N. Petrology of Intrusive Trappean Magmatism in the Western Siberian Craton: Evidence from Petroleum Drilling; Siberian Federal University: Krasnoyarsk, Russia, 2008; p. 248. 42. Egorova, V.; Latypov, R. Mafic–ultramafic sills: New insights from M-and S-shaped mineral and whole-rock compositional profiles. J. Pet. 2013, 54, 2155–2191. 43. Poryadin, V.S.; Strunin, B.M.; Turchin, A.V.; Komarov, V.V.; Fainer, Y.B. State Geological Map of the USSR, Scale 1:200,000, Ser. Turukhansk, Sheet R-46-XIV. Explanatory Note. Krasnoyarskoe Territorialnoe Geologicheskoe Upravlenie: Moscow, Russia, 1977. 44. Alekseenko, V.D.; Alasev, V.A.; Barmin, V.A.; Belolipetskaya, L.I.; Bozhko, V.V.; Varganov, A.S.; Egorov, V.N.; Egorov, A.S.; Kazhaeva, O.D.; Kachevsky, L.K.; et al. State geological Map of the Russian Federation, scale 1:1,000,000 (third generation). In Ser. Angara-Yenisei. Sheet R-46-North Yenisei. Explanatory Note Kart. VSEGEI: St. Petersburg, Russia, 2010. 45. Sobolev, V.S. Selected Works. Trap Petrology; Nauka: Novosibirsk, Russia, 1986; p. 210. 46. Reverdatto, V.V. Metamorphism in the contacts of Anakit trappean massif in the Low Tunguska River. In Materials on Genetik and Experimental Mineralogy; Transactions of the Institute of Geology and Geophysics Siberian Branch Academy of Sciences of USSR: Novosibirsk, Russian, 1964; pp. 97–168. 47. Pertsev, N.N.; Shmulovich, K.I. Physicochemical conditions of larnite-merwinite facies contact metamorphism: A case study from the Podkamennaya Tunguska basin. Izvestiya AN SSSR 1972, 6, 39–47. 48. Tesakov, Yu.I. New silurian formations in the southwest of the Siberian platform. Novosti paleontologii i stratigrafii. Suppl. Russ. Geol. Geophys. 2009, 12, 29–41. 49. Heinrich, W.; Gottschalk, M. Fluid flow patterns and infiltration isograds in melilite marbles from the Bufa del Diente contact metamorphic aureole, north-east Mexico. J. Metamorph. Geol. 1994, 12, 345–359. 50. Shatsky, V.; Sitnikova, E.; Kozmenko, O.; Palessky, S.; Nikolaeva, I.; Zayachkovsky, A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482–496. 51. Element, C.A.S. Method 3051A-microwave assisted acid digestion of sediments, sludges, soils, and oils. Z. Anal. Chem. 2007, 111, 362–366. 52. Carvalho, L.; Monteiro, R.; Figueira, P.; Mieiro, C.; Almeida, J.; Pereira, E.; Magalhães, V.; Pinheiro, L.; Vale, C. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: Evidence of Cd, As and Ba fronts in upper layers. Deep Sea Res. Part. I Oceanogr. Res. Pap. 2018, 131, 133–143. 53. Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Deviatiiarova, A.S.; Goryainov, S.V.; Sharygin, V.V.; Khoury, H.N.; Karmanov, N.S.; Danilovsky, V.A.; Artemyev, D.A.; et al. Ultrahigh-temperature sphalerite from Zn-Cd-Se-rich combustion metamorphic mar-bles, Daba Complex, Central Jordan: Paragenesis, chemistry, and structure. Minerals 2020, 10, 822. 54. Artemyev, D.A.; Ankushev, M.N. Trace elements of Cu-(Fe)-sulfide inclusions in bronze age copper slags from South Urals and Kazakhstan: Ore sources and alloying additions. Minerals 2019, 9, 746. 55. Humphries, D.W. The Preparation of thin Sections of Rocks, Minerals and Ceramics. In Royal Microscopical Society Microscopy Handbooks; Oxford University Press: Oxford, UK, 1992. 56. Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. 57. Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulphide calibration standards for the laser ablation inductively-cou-pled plasma mass spectrometry technique. J. Anal. Spectrom. 2002, 17, 406–409. 58. Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectro-metric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. 59. Canberra Industries Inc. Model S506 Interactive Peak Fit. User’s Manual; Canberra Industries Inc.: Canberra, NSW, Australia, 2002. 60. Gao, S.; Luo, T.C.; Zhang, B.R.; Zhang, H.F.; Han, Y.W.; Hu, Y.K.; Zhao, Z.D. Chemical composition of the continental crust as revealed by studies in east China. Geochim. Cosmochim. Acta. 1998, 62, 1959–1975. 61. Deviatiiarova, A.S. Crystal-Chemical Element Fractionation Under HT-LP Metamorphic Conditions: Case Study from Kochum-dek Contact Aureole (Podkamennaya Tunguska basin). In Proceedings of the XIX International Meeting on Crystal Chemistry, X-ray Diffraction and Spectroscopy of Minerals, Apatity, Russia, 2–9 July 2019; pp. 213. 62. Gerasimova, Y.V.; Oreshonkov, A.S.; Romanova, O.B.; Ivanenko, A.A.; Krylov, A.S. Raman and infrared characterization of gadolinium-doped manganese sulfide. Spectrosc. Lett. 2017, 50, 55–58. 63. Scocioreanu, M.; Baibarac, M.; Baltog, I.; Pasuk, I.; Velula, T. Photoluminescence and raman evidence for mechanico-chemical interaction of polyaniline-emeraldine base with ZnS in cubic and hexagonal phase. J. Solid. State. Chem. 2012, 186, 217–223. 64. Osadchii, E.G.; Gorbaty, Y.E. Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1-xS). Geochim. Cosmo-chim. Acta. 2010, 74, 568–573. 65. Makovicky, E. Crystal structures of sulfides and other chalcogenides. Rev. Mineral. Geochem. 2006, 61, 7–125. 66. Barkov, A.Y.; Martin, R.F.; Cabri, L.J. Rare sulfides enriched in K, Tl and Pb from the Noril’sk and Salmagorsky complexes, Russia: New data and implications. Min. Mag. 2015, 79, 799–808. 67. Dobrovol’skaya, M.G. Alkaline Metals Sulfides in the Nature; Nauka: Moscow, Russia, 2018. 68. Li, C.; Ripley, E.M.; Naldrett, A.J. Compositional variations of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: Implications for ore-forming processes in dynamic magma conduits. Econ. Geol. 2003, 98, 69–86. 69. Jamtveit, B.; Dahlgren, S.; Austrheim, H. High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. Am. Miner. 1997, 82, 1241–1254. 70. Chakhmouradian, A.R.; Mitchell, R.H.; Horvath, L. Rb–Cs-enriched rasvumite and sectorial loparite–lueshite intergrowths from the Mont Saint-Hilaire alkaline complex, Quebec, Canada. Geol. Assoc. Can. Mineral. Assoc. Can. Program Abstr. 2001, 26, 24. 71. Chakhmouradian, A.R.; Halden, N.M.; Mitchell, R.H.; Horváth, L. Rb-Cs-rich rasvumite and sector-zoned “loparite-(Ce)” from Mont Saint-Hilaire (Québec, Canada) and their petrologic significance. Eur. J. Mineral. 2007, 19, 533–546. 72. Sharygin, V.V.; Kamenetsky, V.S.; Kamenetsky, M.B. Potassium sulfides in kimberlite-hosted chloride–«nyerereite» and chloride clasts of Udachnaya-East pipe, Yakutia, Russia. Can. Miner. 2008, 46, 1076–1095. 73. Dobrovol’skaya, M.G.; Tsepin, A.I.; Ilupin, I.P.; Ponomarenko, A.I. Djerfisherite from Yakutia Kimberlites Minerals and Parageneses of Endogenic Deposits. Nauka: Leningrad, Russia, 1975. 74. Clarke, D.B. Synthesis of Nickeloan Djerfisherites and the Origin of Potassic Sulphides at the Frank Smith mine. In The Mantle Sample: Inclusions in Kimberlites and Other Volcanics; Broyd, F.R., Meyer, H.O.A., Eds.; American Geophysical Union, Washington, DC, USA, 1979; Volume 16, pp. 300–308. 75. Distler, V.V.; Ilupin, I.P.; Laputina, I.P. Sulfides of deep-seated origin in kimberlites and some aspects of copper-nickel miner-alization. Int. Geol. Rev. 1987, 29, 456–464. 76. Spetsius, Z.V.; Bulanova, G.P.; Leskova, N.V. Djerfisherite and its genesis in kimberlitic rocks. Dokl Acad. Sci. USSR 1987, 293, 199–202. 77. Bulanova, G.P.; Spetsius, Z.V.; Leskova, N.V. Sulphides in Diamonds and Xenoliths from Yakutian Kimberlite Pipes; Nauka: Novosi-birsk, Russia, 1990; p. 120. 78. Sharygin, V.V.; Golovin, A.V.; Pokhilenko, N.P.; Kamenetsky, V.S. Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Eur. J. Mineral. 2007, 19, 51–63. 79. Sharygin, I.S.; Golovin, A.V.; Pokhilenko, N.P. Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Ya-kutia): Origin and relationship with kimberlite magmatism. Russ. Geol. Geophys. 2012, 53, 247–261. 80. Abersteiner, A.; Kamenetsky, V.S.; Goemann, K.; Golovin, A.V.; Sharygin, I.S.; Giuliani, A.; Rodemann, T.; Spetsius, Z.V.; Kame-netsky, M. Djerfisherite in kimberlites and their xenoliths: Implications for kimberlite melt evolution. Contrib. Mineral. Petrol. 2019, 174, 8. 81. Sharygin, I.S.; Golovin, A.V.; Pokhilenko, N.P. Djerfisherite in kimberlites of the Kuoikskoe field as an indicator of enrichment of kimberlite melts in chlorine. Dokl. Earth Sci. 2011, 436, 301–307. 82. Henderson, C.M.B.; Kogarko, L.N.; Plant, D. Extreme closed system fractionation of volatile-rich, ultrabasic peralkaline melt inclusions and the occurrence of djerfisherite in the Kugda alkaline complex, Siberia. Min. Mag. 1999, 63, 433–438. 83. Zaccarini, F.; Thalhammer, O.A.R.; Princivalle, F.; Lenaz, D.; Stanley, C.J.; Garuti, G. Djerfisherite in the guli dunite complex, polar Siberia: A primary or metasomatic phase. Can. Min. 2007, 45, 1201–1211. 84. Clay, P.L.; O’Driscoll, B.; Upton, B.G.J.; Busemann, H. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites. Am. Miner. 2014, 99, 1683–1693. 85. Takechi, Y.; Kusachi, I.; Nakamuta, Y.; Kase, K. Nickel-bearing djerfisherite in gehlenite-spurrite skarn at Kushiro, Hiroshima prefecture, Japan. Resour. Geol. 2000, 50, 179–184. 86. Fuchs, L.H. Djerfisherite, alkali copper-iron sulfide: A new mineral from enstatite chondrites. Science 1966, 153, 166–167. 87. Lin, Y.; El Goresy, A. A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills 88136 (EL3): Represent-atives of EH and EL parent bodies. Meteorit. Planet. Sci. 2002, 37, 577–599. 88. Faure, G. Principles of Isotope Geology; 2nd ed.; John Wiley and Sons, NY, USA, 1986; 589 p. 89. Rickard, D. Sulfidic Sediments and Sedimentary Rocks; Elsevier: Amsterdam, The Netherlands, 2012. 90. Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. 91. Buchko, I.V.; Sorokin, A.A.; Ponomarchuk, V.A.; Izokh, A.E. Geochemical features and geodynamic setting of formation of the Lukinda dunite-troctolite-gabbro massif (southeastern framing of the Siberian Platform). Russ. Geol. Geophys. 2012, 53, 636–648. 92. Pokrovsky, B.G.; Zaitsev, A.V.; Dronov, A.V.; Bujakaite, M.I.; Petrov, O.L.; Timokhin, A.V. C, О, S, and Sr isotope geochemistry and chemostratigraphy of Ordovician sediments in the Moyero River section, northern Siberian platform. Lithol. Min. Res. 2018, 53, 283–306. 93. Ripley, E.M.; Lightfoot, P.C.; Li, C.; Elswick, E.R. Sulfur isotopic studies of continental flood basalts in the Noril’sk region: Implications for the association between lavas and ore-bearing intrusions. Geochim. Cosmochim. Acta. 2003, 67, 2805–2817. 94. Morse, J.W.; Luther Iii, G.W. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta. 1999, 63, 3373–3378. 95. Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. 96. Parnell, J.; Perez, M.; Armstrong, J.; Bullock, L.; Feldmann, J.; Boyce, A.J. Geochemistry and metallogeny of neoproterozoic pyrite in oxic and anoxic sediments. Geochem. Perspect. Lett. 2018, 7, 12–16. 97. Vernon, R.H.; White, R.W.; Clarke, G.L. False metamorphic events inferred from misinterpretation of microstructural evidence and P-T data. J. Metamorph. Geol. 2008, 26, 437–449. 98. Itaya, T.; Brothers, R.N.; Black, P.M. Sulfides, oxides and sphene in high-pressure schists from New Caledonia. Contrib. Miner. Pet. 1985, 91, 151–162. 99. Kawakami, T.; Ellis, D.J.; Christy, A.G. Sulfide evolution in high-temperature to ultrahigh-temperature metamorphic rocks from Lutzow-Holm complex, East Antarctica. Lithos 2006, 92, 431–446. 100. Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N. Natural pseudowollastonite: Crystal structure, associated minerals, and geological con-text. Lithos 2012, 134, 75–90. 101. Tomashyk, V.; Feychuk, P.; Scherbak, L. Ternary Alloys Based on II-Vi Semiconductor Compounds; 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 560. 102. Knitter, S.; Binnewies, M. Chemical transport of MnS/ZnS, FeS/ZnS, and FeS/MnS mixed crystals. J. Inorg. Gen. Chem. 1999, 625, 1582–1588. 103. Knitter, S.; Binnewies, M. Chemical vapor transport of solid solutions. 7. Chemical vapor transport of FeS/MnS/ZnS mixed crystals. J. Inorg. Gen. Chem. 2000, 626, 2335–2339. 104. Gorbachev, N.S.; Nekrasov, I.Y. Genesis of synthetic and natural potassium sulfides. Dokl. Acad. Sci. USSR. 1980, 251, 126–129. 105. Osadchii, V.O.; Voronin, M.V.; Baranov, A.V. Mineralogy of Potassium-Iron Sulfides and Phase Relations in the System K-Fe-S-(Cl). In Proceeding of the XXVII All-Russian Youth Conference with the Participation of Researchers from other Countries, Irkutsk, Russian, 22-28 May 2017; pp. 166–167. 106. Osadchii, V.O.; Voronin, M.V.; Baranov, A.V. Phase equilibria in the KFeS2-Fe-S system at 300–600 °C and bartonite stability. Contrib. Miner. Pet. 2018, 173, 44. 107. Mitchell, R.H. Crystal structures of CsFe2S3 and RbFe2S3: Synthetic analogs of rasvumite KFe2S3 J. Solid. State. Chem. 2004, 177,1867–1872. 108. Amthauer, G.; Bente, K. Mixed-valent iron in synthetic rasvumite, KFe2S3. Naturwissenschaften 1983, 70, 146–147. 109. Boller, H. On the synthesis, crystal chemistry and magnetic properties of rasvumite and related compounds. Acta Cryst. 2004, 60, s47. 110. Voronin, M.V.; Osadchii, V.O.; Baranov, A.V. Phase Relations Involving Chlorbartonite in the K-Fe-S-Cl System. In Proceedings of the International Conference on Geochemistry and Related Subjects “Goldschmidt”, Barcelona, Spain, 18–23 August 2019; pp. 3535. 111. Buick, I.S.; Cartwright, I. Stable isotope constraints on the mechanism of fluid flow during contact metamorphism around the Marulan Batholith, NSW, Australia. J. Geochem. Explor. 2000, 69, 291–295. 112. Barkov, A.Y.; Laajoki, K.V.O.; Gehor, S.A.; Yakovlev, Y.N.; Taikina-Aho, O. Chlorine-poor analogues of djerfisherite-thalfenisite from Noril'sk, Siberia, and Salmagorsky, Kola Peninsula, Russia. Can. Miner. 1997, 35, 1421–1430. 113. Sluzhenikin, S.F.; Laputina, I.P. Composition of Minerals of the Djerfisherite Group in Copper-Nickel Ores of the Talnakh De-posit. In “Microprobe and Progress in Geology”, Suzdal, Russia, 21–28 April 1989; pp. 107–110. 114. Sharygin, V.V.; Starikova, A.Ye. Sulfide Associations in Garnet-Melilite-wollastonite Skarns of the Tazheran Alkaline Massif, Baikal Region. In Proceedings of the XXVII International Conference School “Geochemistry of Alkaline Rocks”, Moscow-Kok-tebel, Russia, 9-16 September 2010; pp. 164–166. 115. Starikova, A.E. Mineralogy of Metasomatic Rocks of the Tazheran Massif (Western Baikal Area). Ph.D. Thesis, Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia, 21 May 2013; p. 207. 116. Heinrich, W.; Churakov, S.S.; Gottschalk, M. Mineral-fluid equilibria in the system CaO–MgO–SiO2–H2O–CO2–NaCl and the record of reactive fluid flow in contact metamorphic aureoles. Contrib. Miner. Pet. 2004, 148, 131–149.