Инд. авторы: Pavlushin A., Zedgenizov D.A., Vasil'ev E., Kuper K.
Заглавие: Morphology and Genesis of Ballas and Ballas-Like Diamonds
Библ. ссылка: Pavlushin A., Zedgenizov D.A., Vasil'ev E., Kuper K. Morphology and Genesis of Ballas and Ballas-Like Diamonds // CRYSTALS. - 2021. - Vol.11. - Iss. 1. - Art.17. - ISSN 2073-4352.
Внешние системы: DOI: 10.3390/cryst11010017; РИНЦ: 45033646; WoS: 000610133100001;
Реферат: eng: Ballas diamond is a rare form of the polycrystalline radial aggregate of diamonds with diverse internal structures. The morphological features of ballas diamonds have experienced repeated revision. The need that this paper presents for development of a crystal-genetic classification was determined by a rich variety of combined and transitional forms of ballas-like diamonds, which include aggregates, crystals, and intergrowths. The new crystal-genetic classification combines already-known and new morphological types of ballas as well as ballas-like diamonds discovered in the placers of Yakutia, the Urals, and Brazil. The ballas-like diamond forms include spherocrystals, aggregates with a single crystal core, split crystals, radial multiple twin intergrowths, and globular crystals. The crystal genetic scheme of the evolution of ballas and ballas-like diamonds is a sequence of the morphological types arranged in accordance with the conventional model of the dependence of the mechanism and diamond growth from carbon supersaturation developed by I. Sunagawa. The evolution of the growth forms of ballas and ballas-like diamonds was tracked based on the macrozonal structure of diamonds varying from a flat-faced octahedron to a fibrous cuboid with its transition forms to the radiating crystal aggregates. The morphological diversity of the ballas-like diamonds depends on the level of supersaturation, and abrupt changes of the level of supersaturation engender abrupt changes in a mechanism of crystal growth. The change in the rate of growth under the influence of adsorption and absorption of the mechanic impurities accompanied the sudden appearance of the autodeformation defects in the form of splitting and multiple radial twinning of crystals. The spherical shape of Yakutia ballas-like diamonds is due to the volumetric dissolution that results in the curved-face crystals of the "Urals" or "Brazilian" type associated with ballas diamonds in placers.
Ключевые слова: ballas-like diamond; twinning; polycrystalline of diamonds; crystals splitting; morphology; ballas diamond;
Издано: 2021
Физ. характеристика: 17
Цитирование: 1. Williams, A.F. The Genesis of Diamond; E. Benn Ltd.: London, UK, 1932; Volume 2, p. 636. 2. Orlov, Y.L. Diamond Morphology; Izd. AN SSSR: Moscow, Russia, 1963; p. 233. (In Russian) 3. Orlov, Y.L. The Mineralogy of Diamond; John Wiley: New York, NY, USA, 1977; p. 233. 4. Fersman, A.E.; Goldschmidt, V. Der Diamant: Eine Studie. C; Winter's: Heidelberg, Germany, 1911; p. 274. 5. Trueb, L.F.; Barrett, C.S. Microstructural Investigation of Ballas Diamond. Am. Mineral. 1972, 57, 1664–1680. 6. Kukharenko, A.A. Diamonds of the Urals; Gosgeoltekhizdat: Moskow, Russia, 1955; p. 512. (In Russian) 7. Kaminsky, F.V.; Kirikilitsa, S.I.; Polkanov, Y.A.; Khrenov, A.Y.; Malogolovets, V.G.; Nachalnaya, T.A.; Podzyarei, G.A. Ballas Prisayanya. Dokl. Akad. Nauk SSSR 1982, 267, 1218–1221. (In Russian) 8. Kaminsky, F.V.; Klyuyev, Y.A.; Prokopchuk, B.I.; Shcheka, S.A.; Smirnov, V.I.; Ivanovskaya, P.N. The First Carbonado Finds and the New Ballas Find in the Soviet Union. Dokl. Akad. Nauk SSSR 1978, 242, 687–689. (In Russian) 9. Afanasiev, V.P.; Yefimova, E.S.; Zinchuk, N.N.; Koptil, V.I. Atlas of Morphology of Diamonds from Russian Sources; SPC UIGGM, SB RAS: Novosibirsk, Russia, 2000; p. 298. 10. Bartoshinsky, Z.V.; Kvasnytsya, V.N. Crystallomorphology of a Diamond from Kimberlite; Naukova Dumka: Kiev, Ukraine, 1991; p. 172. (In Russian) 11. Martovitsky, V.P.; Bul'enkov, N.A.; Solodova, Y.P. Features of the internal structure of crystal-like Ballas. Izv. Akad. Nauk SSSR Ser. Geol. 1985, 6, 71–77. (In Russian) 12. Orlov, Y.L.; Bulienkov, N.A.; Martovitsky, V.P. Spherical diamond crystals: A new type of natural fibrous single crystals. Dokl. Akad. Nauk SSSR 1980, 252, 703–707. (In Russian) 13. Nikol'skaya, I.V.; Vereshchagin, L.F.; Orlov, Y.L.; Feklichev, Y.M.; Kalashnikov, Y.A. Comparative Study of Natural and Synthesized Ballases. Dokl. Akad. Nauk SSSR 1968, 182, 77–79. (In Russian) 14. Lux, B.; Haubner, R.; Holzef, H.; DeVrie, R.C. Natural and Synthetic Polycrystalline Diamond, with Emphasis on Ballas. Intern. J. Refract. Met. Hard Mater. 1997, 15, 263–288. [CrossRef] 15. Ragozin, A.L.; Zedgenizov, D.A.; Kuper, K.E.; Shatsky, V.S. Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian Platform. Mineral. Petrol. 2016, 110, 861–875. [CrossRef] 16. Ragozin, A.L.; Zedgenizov, D.A.; Shatsky, V.S.; Kuper, K.E. Formation of mosaic diamonds from the Zarnitsa kimberlite. Russ. Geol. Geophys. 2018, 59, 486–498. [CrossRef] 17. Ragozin, A.L.; Zedgenizov, D.A.; Kuper, K.E.; Pal'yanov, Y.N. Specific Internal Structure of Diamonds from Zarnitsa Kimberlite Pipe. Crystals 2017, 7, 133. [CrossRef] 18. Shiryaev, A.A.; Khokhryakov, A.F.; Reutsky, V.N.; Golovanova, T.I. Structure and Defects in Natural Ballas-Type Diamonds: A Case Study. Geochem. Int. 2020, 58, 1299–1312. [CrossRef] 19. Haubner, R.; Lux, B. Deposition of ballas diamond and nano-crystalline diamond International. J. Refract. Met. Hard Mater. 2002, 20, 93–100. [CrossRef] 20. Belyankina, A.V.; Sozin, Y.I.; Cherepenina, E.S.; Butakova, T.Y. On the structure of polycrystalline diamonds of the Ballas and Carbonado type. Synth. Diam. 1976, 2, 13–17. (In Russian) 21. Apollonov, V.N.; Borovikov, N.F.; Vereshchagin, L.F.; Kalashnikov, Y.A.; Shalimov, M.D. Structure of Diamond Dendrites of Synthetic Ballases. Dokl. Akad. Nauk SSSR 1976, 226, 558–559. 22. Moriyoshi, Y.; Kamo, M.; Setaka, N.; Sato, Y. The microstructure of natural polycrystal diamond, carbonado and ballas. J. Mater. Sci. 1983, 18, 217–224. [CrossRef] 23. Vereshchagin, L.F.; Apollonov, V.N.; Shalimov, M.D.; Kalashnikov, Y.A.; Grigoriev, V.M. About Diamond Twins of Synthetic Ballases. Dokl. Akad. Nauk SSSR 1973, 208, 844–845. 24. Bühlmann, S.; Blank, E.; Haubner, R.; Lux, B. Characterization of ballas diamond depositions. Diam. Relat. Mater. 1999, 8, 194–201. [CrossRef] 25. Kuper, K.E.; Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S. X-ray topography of natural diamonds on the VEPP-3 SR beam. Nucl. Insrum. Meth. A 2009, 603, 170–173. [CrossRef] 26. Sunagawa, I. Crystals: Growth, Morphology and Perfection; Cambridge University Press: Cambridge, UK, 2005; p. 295. 27. Grigoriev, D.P. On the Genesis of Minerals. Proc. Russ. Miner. Soc. 1947, 76, 51–62. (In Russian) 28. Punin, Y.O. Splitting of crystals. Proceed. Russ. Miner. Soc. 1981, 6, 666–686. (In Russian) 29. Shafranovsky, I.I. Mineral Crystals: Curved, Skeletal and Granular Forms; Gosgeoltekhizdat: Moscow, Russia, 1961; p. 332. (In Russian) 30. Pavlushin, A.D.; Zedgenizov, D.A.; Pirogovskaya, K.L. Crystal Morphological Evolution of Growth and Dissolution of Curve-Faced Cubic Diamonds from Placers of the Anabar Diamondiferous Region. Geochem. Int. 2017, 55, 1153–1163. [CrossRef] 31. Orlov, Y.L.; Bulienkov, N.A.; Martovitsky, V.P. A Study of the Internal Structure of Variety III Diamonds by X-Ray Section Topography. Phys. Chem. Miner. 1982, 8, 105–111. [CrossRef] 32. Punin, Y.O. Role of the habit of crystals in formation of autodistorsion defects. Proceed. Russ. Miner. Soc. 2000, 6, 1–11. (In Russian) 33. Orlov, Y.L. Varieties of crystals and polycrystalline diamond splices. In New Data on Minerals of the USSR; Nauka: Moscow, Russia, 1965; Volume 16, pp. 141–154. (In Russian) 34. Fedortchouk, Y.; Canil, D. Diamond oxidation at atmospheric pressure: Development of surface features and the effect of oxygen fugacity. Eur. J. Mineral. 2009, 21, 623–635. [CrossRef] 35. Mokievsky, V.A. Morphology of crystals. In Methodological Guid; Nedra: Leningrad, Russia, 1983; p. 296. (In Russian) 36. Zinchuk, N.N.; Koptil, V.I. Typomorphism of Diamonds of the Siberian Platform; Nedra: Moscow, Russia, 2003; p. 603. (In Russian) 37. Khokhryakov, A.F.; Pal'yanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Mineral. 2007, 92, 909–917. [CrossRef] 38. Heimann, R.B. Auflosung von Kristallen: Theorie und Technische Anwendung, Applied Mineralogy; Springer: New York, NY, USA, 1975; Volume 8, p. 270. (In German) 39. Slawson, C.B. Twinning in the Diamond. Am. Mineral. 1950, 35, 193–206. 40. Palache, C. Multiple Twins of Diamond and Sphalerite. Am. Mineral. 1932, 17, 360–361. 41. Tamor, M.A.; Everson, M.P. On the role of penetration twins in the morphological development of vapor-grown diamond films. J. Mater. Res. 1994, 9, 1839–1849. [CrossRef] 42. Hofmeister, H. Shape variations and anisotropic growth of multiply twinned nanoparticles. Zeitschrift fur Kristallographie 2009, 224, 528–538. [CrossRef] 43. Kvasnytsya, V.N.; Kvasnytsya, I.V. Cyclic Twins of CVD Diamond Crystal. J. Superhard Mater. 2019, 41, 369–376. [CrossRef] 44. Mani, R.C.; Sunkara, M.K. Kinetic faceting of multiply twinned diamond crystal during vapor phase syntesis. Diam. Relat. Mater. 2003, 12, 324–329. [CrossRef] 45. Son, S.I.; Chung, S.J. Multiply Twinning of Diamond Synthesized by Acetylene Flame. Zeitschrift fur Kristallographie 2004, 219, 494–505. 46. Lehmann, O. Die Neue Welt der Flüssigen Kristalle und Deren Bedeutung für Physik, Chemie, Technik und Biologie; Akademische Verlagsgesellschaft: Leipzig, Germany, 1911; Volume VI, p. 388. (In German) 47. Fischer, R.B. The ‘Ballas' Form of Diamond. Nature 1961, 189, 50. [CrossRef] 48. Palache, C.; Berman, H.; Frondel, C. Dana's System of Mineralogy, 7th ed.; Wiley: New York, NY, USA, 1944; Volume 1, pp. 1–834. 49. DeVries, R.C.; Robertson, C. The Microstructure of Ballas (Polycrystalline Diamond) by Electrostatic Charging in the SEM. J. Mater. Sci. Lett. 1985, 4, 805–807. [CrossRef] 50. Dibrov, V.E.; Mironov, I.K.; Khol, F.I.; Andrianov, V.T. Geological Structure and Diamond Content of the South-Western Part of the Siberian Platform; Academy of Sciences: Moscow, Russia, 1960; p. 97. (In Russian) 51. Joksch, M.; Wurzinger, P.; Pongratz, P.; Haubner, R.; Lux, B. Characterization of Diamond Coatings with Transmission Electron Microscopy. Diam. Relat. Mater. 1994, 3, 681–687. [CrossRef] 52. Sunagawa, I. Growth of Crystals in Nature. In Materials Science of the Earth's Interior; Terrapub: Tokyo, Japan, 1984; pp. 63–105. 53. Kozlova, O.G.; Orlova, A.O. Formation of Spherulites. Dokl. Akad. Nauk SSSR 1985, 280, 628–630. (In Russian)