Инд. авторы: Yelisseyev A.P., Emelyanov A.A., Rebrov A.K., Timoshenko N.I., Yudin I.B., Gromilov S.A., Titov A.T., Plotnikov M.Y.
Заглавие: Structure of a diamond deposited from microwave plasma by a new gas-jet method
Библ. ссылка: Yelisseyev A.P., Emelyanov A.A., Rebrov A.K., Timoshenko N.I., Yudin I.B., Gromilov S.A., Titov A.T., Plotnikov M.Y. Structure of a diamond deposited from microwave plasma by a new gas-jet method // International Journal of Refractory Metals and Hard Materials. - 2021. - Vol.94. - Art.105386. - ISSN 0263-4368.
Внешние системы: DOI: 10.1016/j.ijrmhm.2020.105386; РИНЦ: 45257832; WoS: 000591704000001;
Реферат: eng: Diamond coatings on a molybdenum substrate were obtained by gas-phase deposition from a high-speed jet of activated gases. In the most common case, diamond film is formed as a result of the appearance of discrete nuclei on the substrate, their growing and competing. We observed the formation of coatings consisting of separate isometric aggregates with different types of packaging (111) or (100) plates depending on the process parameters (gas flow, the H-2/CH4 ratio, the substrate temperature). The study of coating morphology using optical and electron scanning microscopy suggests that the particles were in the gas phase for a long time and increased to the size of tens of microns, and then deposited on the substrate. This process can be explained by the charged state of the particles, according to the charged cluster model of Hwang (1996). The study of the structure and phase composition by XRD and Raman spectroscopy revealed amorphous carbon, disordered and crystalline graphite, molybdenum carbide with the dominant contribution of diamond). The broadband luminescence of the coating under UV excitation is related to amorphous carbon, whereas 532 nm excitation causes the glow of vacancy centers such as (NV-) and (SiV-).
Ключевые слова: Coating; Structure; Raman; Luminescence; Defects; CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; OPTICAL-PROPERTIES; IMPACT DIAMONDS; GROWTH; CARBON; PHOTOLUMINESCENCE; FILMS; SUBSTRATE; CVD; CVD diamond;
Издано: 2021
Физ. характеристика: 105386
Цитирование: 1. Coe, S.E., Sussmann, R.S., Optical, thermal and mechanical properties of CVD diamond. Diam. Relat. Mater. 9 (2000), 1726–1729. 2. Balmer, R.S., Brandon, J.R., Clewes, S.L., Dhillon, H.K., Dodson, J.M., Friel, I., Inglis, P.N., Madgwick, T.D., Markham, M.L., Mollart, T.P., Chemical vapour deposition of synthetic diamond: Materials, technology and applications. J. Phys. Condens. Matter., 21, 2009, 364221. 3. Lu, Y.-J., Lin, C.-N., Shan, C.-X., Optoelectronic diamond: growth, properties, and photodetection applications. Adv Opt Mater., 6, 2018, 1800359. 4. Liu, H., Dandy, D.S., Studies on nucleation process in diamond CVD: an overview of recent developments. Diam. Relat. Mater. 4 (1995), 1173–1188. 5. Pierson, H.O., Handbook of chemical vapor deposition: Principles, technology and applications. 2nd edition, 1999, NOYES Publications, Park Ridge, New Jersey, USA, 506 ISBN 978-0-8155-1432-9. 6. Silva, F., Hassouni, K., Bonnin, X., Gicquel, A., Microwave engineering of plasma-assisted CVD reactors for diamond deposition. J. Phys. Condens. Matter, 21, 2009, 364202. 7. Zhang, L., Ma, Z., Wu, L., Growth and characterization of diamond films deposited at high_pressure using a low-power microwave plasma reactor. Inorg. Mater. 47:3 (2011), 255–261. 8. Balmer, R.S., Brandon, J.R., Clewes, S.L., Chemical vapour deposition synthetic diamond: materials, technology and applications. J. Phys. Condens. Matter, 21, 2009, 364221. 9. Ashfold, M.N.R., Mahoney, E.J.D., Mushtaq, S., What (plasma used for growing) diamond can shine like flame?. Chem Commun (Camb) 53 (2017), 10482–10495. 10. Muchnikov, A.B., Vikharev, A.L., Gorbachev, A.M., et al. Homoepitaxial single crystal diamond growth at different gas pressures and MPACVD reactor configurations. Diam. Relat. Mater. 19 (2010), 432–436. 11. Butler, J.E., Mankelevich, Y.A., Cheesman, A., et al. Understanding the chemical vapor deposition of diamond: recent progress. J. Phys. Condens. Matter, 21, 2009, 364201. 12. Liang, Q., Chin, C.Y., Lai, J., et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl. Phys. Lett., 94, 2009, 024103. 13. Horino, Y., Chayahara, A., Mokuno, Y., et al. High-rate growth of large diamonds by microwave plasma chemical vapor deposition with newly designed substrate holders. New Diamond Front. Carbon Technol. 16 (2006), 63–69. 14. Rebrov, A.K., Bobrov, M.S., Emelyanov, A.A., et al. Experience in the synthesis of diamond from a supersonic microwave plasma jet. Interfacial Phenomena Heat Transf. 7 (2019), 131–137. 15. Khmelnitsky, R.A., Talipov, N.Kh., Chucheva, G.V., Synthetic diamond for electronics and optics. 2017, IKAR Publications, Moscow, 228 ISBN 978-5-7974-0558-0. 16. Rebrov, A.K., Plotnikov, M.Yu., Timoshenko, N.I., et al. Synthesis of diamond from a high-velocity microwave plasma flow. Dokl. Phys. 65 (2020), 23–25. 17. Hrebtov, M.Yu., Bobrov, M.S., Numerical optimization of hydrogen microwave plasma reactor for diamond film deposition. J. Phys. Conf. Ser., 1359, 2019, 012010. 18. Bobrov, M.S., Hrebtov, M.Yu., Rebrov, A.K., Numerical simulation of the activation process of supersonic gas flows by a microwave discharge. Proc. of the 17th Intern. conf. on microwave and high frequency heating, AMPERE 2019, Valencia (Spain), Sept. 9–12, 2019, 2019, American Society for Precision Engineering, P, 67–71. 19. Hidnert, P., Gero, W.B., Thermal expansion of molybdenum. Natl. Bur. Stand. Tech. News Bull. 19 (1924), 429–444. 20. Moelle, C., Klose, S., Szücs, F., Fecht, H.J., Johnston, C., Chalker, P.R., Werner, M., Measurement and calculation of the thermal expansion coefficient of diamond. Diam. Relat. Mater. 6 (1997), 839–842. 21. Francois, N., Kim, S.H., Park, Y.S., Lee, J.-W., Hahn, I.T., Yun, W.S., Effect of substrate on the characteristics of the interface between diamond film and substrate. Diam. Relat. Mater. 61 (1997), 959–963l. 22. Gracio, J.J., Fan, Q.H., Madaleno, J.C., Diamond growth by chemical vapour deposition. J. Phys. D. Appl. Phys., 43, 2010, 374017. 23. Panchenko, A.V., Tolstikh, N.D., Gromilov, S.A., Method of XRD analysis of crystal aggregates. J. Struct. Chem. 55:Suppl. 1 (2014), S24–S29. 24. Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustovarov, V., Gromilov, S., Panchenko, A., Pokhilenko, N., Litasov, K., Luminescence of natural carbon nanomaterials- impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 58 (2015), 69–77. 25. Yelisseyev, A.P., Afanasiev, V.P., Panchenko, A.V., Gromilov, S.A., Panchenko, A.V., Kaichev, V.V., Saraev, A.A., Yakutites: are they diamonds from the Popigai crater?. Lithos. 265 (2016), 278–291. 26. Prescher, C., Prakapenka, V.B., DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res., 35, 2015, 3. 27. Powder Diffraction File. PDF-2/Release 2009, 2009, International Centre for Diffraction Data, USA. 28. Inorganic Crystal Structure Database. / ICSD. Release 2018, Fashinformationszentrum Karlsruhe, D–1754 Eggenstein–Leopoldshafen, Germany, 2018. 29. Hwang, N.M., Non-classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. 2016, Springer Science+Business Media Dordrecht. 30. Colfen, H., Antonietti, M., Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Edit. 44 (2005), 5576–5591. 31. Zhu, W., Badzian, A.R., Messier, R., Morphological phenomena of CVD diamond (Part I), SPIE 1325 Diamond Optics III. 1990, I87–201. 32. Spitsyn, B.V., Bouilov, L.L., Derjagin, B.V., Vapour growth of diamond on diamond and other surfaces. J. Cryst. Growth 52 (1981), 219–226. 33. Kobashi, K., Nishimura, K., Kawate, Y., Horiuchi, T., Synthesis of diamonds by use of microwave chemical vapour deposition: morphology and growth of diamond films. Phys. Rev. B 38 (1988), 4067–4084. 34. Mo, T., Xu, J., Yang, Y., Li, Y., Effect of carburization protocols on molybdenum carbide synthesis and study on its performance in CO hydrogenation. Catal. Today 261 (2016), 101–115. 35. Xiao, T.C., York, A.P.E., Al-Megren, H., Williams, C.V., Wang, H.T., Green, M.L.H., Preparation and characterisation of bimetallic cobalt and molybdenum carbides. J. Catal. 202 (2001), 100–109. 36. Yarbrough, W.A., Messier, R., Current issues and problems in the CVD of diamond. Science., 247, 1990, 688. 37. Zaitsev, A.M., Optical Properties of Diamonds, A data handbook. 2001, Springer-Verlag, Berlin, 502. 38. Reich, S., Thomsen, C., Raman spectroscopy of graphite. Phil.Trans.Roy.Soc.Lond A. 362 (2004), 2271–2288. 39. Reshetnyak, N.B., Ezersky, V.A., Raman scattering in natural diamonds. Mineral.J. 12 (1990), 3–9 (in Russian). 40. Yelisseyev, A., Meng, G.S., Afanasyev, V., Pokhilenko, N., Pustovarov, V., Isakova, A., Lin, Z.S., Lin, H.Q., Optical properties of impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 37 (2013), 8–16. 41. Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A.S., Afanas'ev, V.P., Pokhilenko, N.P., Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45 (2014), 305–313. 42. Ferrari, A.C., Robertson, J., Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil.Trans.Roy.Soc.London A. 362 (2004), 2477–2512. 43. Knight, D.S., White, W.B., Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4 (1989), 385–393. 44. Tuinstra, F., Koenig, J.L., Raman spectrum of graphite. J. Chem. Phys. 53 (1970), 1126–1130. 45. Chung, P.-H., Perevedentseva, E., Cheng, C.-L., The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 601 (2007), 3866–3870. 46. Alekseevski, A.E., Osipov, V.Yu., Vul, A.Ya., Ber, B.Ya., Smirnov, A.B., Melekhin, V.G., Adriaenssens, G.J., Yakoubovsky, K., Optical properties of nanodiamond layers. Phys. Solid State, 43, 2001, 145. 47. Kompan, M.E., Terukov, E.I., Gordeev, S.K., Zhukov, S.G., Nikolaev, YuA, Photoluminescence spectra of ultradisperse diamond. Fiz Tverd Tela (Phys Solid State). 39 (1997), 1928–1929. 48. Amaratunga, G.A.J., Silva, S.R.P., Photoluminescence in amorphous carbon thin films and its relation to thec microscopic properties. Thin Solid Films 270 (1995), 160–164. 49. Anguita, J.V., Silva, S.R.P., Young, W., Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films. J. Appl. Phys. 88 (2000), 5175–5179. 50. Xu, J., Li, W., Ma, T., Li, Z., Wang, L., Chen, K., Novel photoluminescence from hydrogenated amorphous carbon films prepared by using xylene source. J. Mater. Res. 16 (2001), 325–328. 51. Wang, B.B., Cheng, Q.J., Wang, L.H., Zheng, K., Ostrikov, K., The effect of temperature on the mechanism of photoluminescence from plasma-nucleated nitrogenated carbon nanotips. Carbon. 50 (2012), 3561–3571. 52. Politi, J.K.S., Vines, F., Rodriquez, J.A., Illas, F., Atomic and electronic structure of Mo carbide phases: bulk and low miller-index surfaces. Phys. Chem. Chem. Phys., 15, 2013, 12617. 53. Rudolph, P., Handbook on crystal growth, v.II, part A. 2014, Elsevier. 54. Bokii, G.B., Bezrukov, G.N., Kluyev, Y.A., Naletov, A.M., Nepsha, V.I., Natural and Synthetic Diamonds. 1986, Nauka, Moscow (in Russian). 55. Beveratos, A., Brouri, R., Gacoin, T., Poizat, J.-P., Grangier, P., Nonclassical radiation from diamond nanocrystals. Phys. Rev. A, 64, 2001, 061802. 56. Hepp, C., Müller, T., Waselowski, V., Becker, J.N., Pingault, B., Sternschulte, H., Steinmüller-Nethl, D., Gali, A., Maze, J.R., Atatüre, M., Becher, C., Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112 (2014), 1–5. 57. Wang, C., Kurtsiefer, C., Weinfurter, H., Burchard, B., Single photon emission from SiV centres in diamond produced by ion implantation. J Phys B: At Mol Opt. 39 (2006), 37–41. 58. Rogers, L.J., Jahnke, K.D., Teraji, T., Marseglia, L., Müller, C., Naydenov, B., Schauffert, H., Kranz, C., Isoya, J., McGuinness, L.P., Jelezko, F., Multiple intrinsically identical single-photon emitters in the solid state. Nature Comm., 5, 2014, 4739. 59. Oxborrow, M., Sinclair, A.G., Single-photon sources. Contemp. Phys. 46 (2005), 173–206. 60. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V., Single-photon sources and detectors. Rev. Sci. Instrum., 82, 2011, 071101.