Инд. авторы: Kazantseva L.K., Mikhno A.O., Miroshnichenko L.V.
Заглавие: Crystallization-induced stabilization of foam glass aggregates for heat-insulating concrete
Библ. ссылка: Kazantseva L.K., Mikhno A.O., Miroshnichenko L.V. Crystallization-induced stabilization of foam glass aggregates for heat-insulating concrete // INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY. - 2021. - ISSN 1546-542X.
Внешние системы: DOI: 10.1111/ijac.13771; РИНЦ: 46063636; WoS: 000651194000001;
Реферат: eng: Resistance of the porous glass-based aggregates to alkali-silicate reaction (ASR) was the focus of this study. ASR was studied in mixtures of aggregates with water alkali solutions simulating alkali media of row concrete. Granular foam glass with homogeneous glass in the pore walls is ASR-active, which leads to the leaching of glass and to the formation of hydrated Na-silicate gel, Ca-silicate, and aluminosilicate on the aggregate surfaces. Mitigation of ASR-activity in granular foam glass was achieved by thermo-induced crystallization (850-900oC) of micro- and nanoscale crystals (Na4CaSi3O9 and/or Na2Ca3Si6O16) in the pore walls with the formation of granular glass-ceramic foams. The main characterization methods were scanning electron microscopy, x-ray powder diffraction analysis, x-ray fluorescence, atomic emission spectrometry, and pH analysis.
Ключевые слова: silica reaction; foam glass; glass crystallization; glass‐; ceramic foams; heat‐; insulating concrete; porous glass‐; ALKALI-SILICA REACTIVITY; WASTE GLASS; IRON-OXIDES; CERAMICS; REDUCTION; DEVITRITE; MIXTURES; based aggregates; alkali‐;
Издано: 2021
Цитирование: 1. Neville AM. Properties of Concrete, 5th edn. New Jersey: Prentice Hall; 1972. 2. ASTM C1293–08b. Standard test method for determination of length change of concrete due to alkali-silica reaction. In Annual Book of ASTM Standards. Philadelphia: American Society for Testing and Materials; 2008. p. 7. 3. ASTM C1260–07. Standard test method for potential alkali reactivity of aggregates (Mortar Bar Method). In Annual Book of ASTM Standards. Philadelphia: American Society for Testing and Materials; 2007. p. 5. 4. Carlos C, Mancio M, Shomglin K, Harvey J, Monteiro P, Ali A. Accelerated Laboratory Testing for Alkali-Silica Reaction Using. ASTM 1293 and Comparison with ASTM 1260. 2004. 5. Lindgård J, Andiç-Çakır Ö, Fernandes I, Rønning TF, Thomas MDA. Alkali-silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. Cem Concr Res. 2012;42(2):223–43. 6. Lu D, Fournier B, Grattan-Bellew PE. Evaluation of accelerated test methods for determining alkali-silica reactivity of concrete aggregates. Cem Concr Compos. 2006;28:546–54. 7. Grinys A, Bocullo V, Gumuliauskas A. Research of alkali silica reaction in concrete with active mineral additives. J Sustain Archit Civ Eng. 2014;1:34–41. 8. Remarque W, Heinz D, Schleusser C. Glass powder as a reactive addition for blast furnace cements. Paper presented at: Recycling and Reuse of Glass Cullet Proceedings International Symposium, Dundee; 2001. p. 229–38. 9. Dhir RK, Dyer TD, Tang LS. Expansion due to alkali-silica reaction (ASR) of glass cullet used in concrete. Paper presented at: Sustainable Waste Management. Proceedings International Symposium, Dundee, 2003. p. 751–60. 10. Kaveh A, Prasada RR. Mitigating alkali–silica reaction in concrete, In: Effectiveness of ground glass powder from recycled glass. Transp Res Rec. 2015;2508(1):65–72. 11. Maraghechi H, Shafaatian MH, Fischer G, Rajabipour F. The role of residual cracks in alkali silica reactivity of recycled glass aggregates. Cem Concr Compos. 2012;34:41–7. 12. Idir R, Cyr M, Tagnit-Hamou A. Use of fine glass as ASR inhibitor in glass aggregate mortars. Constr Build Mater. 2010;24:1309–12. 13. Lee G, Ling T-C, Wong Y-L, Poon C-S. Effects of crushed glass cullet sizes, casting methods and pozzolanic materials on ASR of concrete blocks. Constr Build Mater. 2011;25(5):2611–18. 14. Collins RJ, Bareham BD. Alkali-silica reaction: suppression of expansion using porous aggregate. Cem Concr Res. 1987;17:89–96. 15. Collins RJ. Alkali aggregate reactivity in dense concretes containing synthetic or porous natural aggregate. Cem Concr Res. 1989;19:278–88. 16. Ceukelaire LD. Alkali - silica reaction in a lightweight concrete bridge, Alkali-Aggregate Reaction in Concrete. Paper presented at Proceedings of the 9th International Conference, London, 1992. p. 231–239. 17. Ducman V, Mladenovic A, Suput JS. Lightweight aggregate based on waste glass and its alkali-silica reactivity. Cem Concr Res. 2002;32:223–6. 18. Mladenovič A, Šuput JS, Ducman V, Škapin AS. Alkali-silica reactivity of some frequently used lightweight aggregates. Cem Concr Res. 2004;34:1809–16. 19. Bumanis G, Bajare D, Locs J, Korjakins A. Alkali-silica reactivity of foam glass granules in structure of lightweight concrete. Constr Build Mater. 2013;47:274–81. 20. Puzanov AI, Puzanov SI, Ketov AA. Utilization of glass cullet for the production of binding materials. Paper presented at Role of Concrete in Global Development, Proceedings of 17th International Conference, Dundee, 2008. p. 317–324. 21. Foam Sital Glass [In Russian]. http://www.penosytal.com/compare_cement.html 22. Kazantseva LK, Puzanov IS. Crystallization of the amorphous phase in foam glass as a method of decreasing the alkali-silicon reaction. Glass Ceram. 2016;73:77–81. 23. Rincón A, Giacomello G, Pasetto M, Bernardo E. Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J Eur Ceram Soc. 2017;37(5):2227–34. 24. Monich PR, Romero AR, Hollen D, Bernardo E. Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste. J Clean Prod. 2018;188:871–8. 25. Romero AR, Salvo M, Bernardo E. Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of ‘inorganic gel casting’ and sinter-crystallization. Constr Build Mater. 2018;192:133–40. 26. Kazantseva LK, Seretkin YV, Puzanov IS. Stability of foam-silicate aggregates against alkali in cement. Glass Ceram. 2018;74:372–7. 27. Kazantseva LK, Seretkin YV, Rashchenko SV, Nikitin AI. Influence of the devitrification of the glass in porous aggregates on the resistance to alkali in cement. Glass Ceram. 2019;76:49–55. 28. Berezhnoi AI. Glass-Ceramics and Photo-Sitalls. New York: Plenum Press; 1970. 29. Höland WG, Beall GH. Glass-Ceramics Technology, 2nd edn. Hoboken: Wiley; 2012. 30. Bernardo E, Bonomo E, Dattoli A. Optimisation of sintered glass–ceramics from an industrial waste glass. Ceram Int. 2010;36:1675–80. 31. Demidovich BK. Foam Glass [In Russian]. Minsk: Nauka i Tekhnika; 1975. 32. Scarinci G, Brusatin G, Bernardo E. Glass foams. In: Scheffer M, Colombo P, editors. Cellular Ceramics, Weinheim: Wiley-VCH Verlag GmbH. & Co. KgaA, 2005; p. 158–76. https://doi.org/10.1002/3527606696.ch2g 33. Steiner A. Foam glass production from vitrifies municipal waste fly ashes. Eindhoven: PhD Thesis Eindhoven University of Technology; 2006. 34. König J, Petersen RR, Yue Y. Fabrication of highly insulation foam glass made from CRT panel glass. Ceram Int. 2015;41(8):9793–800. 35. König J, Petersen RR, Yue Y. Influence of the glass-calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass. J Eur Ceram Soc. 2014;34(6):1591–8. 36. Petersen RR, König J, Smedskjaer MM, Yue Y. Foaming of CRT panel glass powder using Na2CO3. Glass Technol - Part A. 2014;55:1–6. 37. Petersen RR, König J, Smedskjaer MM, Yue Y. Effect of Na2CO3 as foaming agent on dynamics and structure of foam glass melt. J Non-Cryst Solids. 2014;400:1–5. 38. König J, Petersen RR, Yue Y. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses. J Non-Cryst Solids. 2016;447:190–7. 39. Granular foam glass [In Russian]. https://neftezol.ru/penosteklo 40. Granular foam glass [In Russian]. https://baltimix.ru/confer_archive/reports/doclad16/Poraver2016.pdf 41. Ficher RX, Tillmanns E. Die kristallstruktur von Na4CaSi3O9 und Ca3Al2O6. Zeitschrift fur Kristallographie. 1984;166:245–56. 42. Knowles KM, Li B, Ramsey CNF, Thompson RP. Microstructural characterization of devitrite, Na2Ca3Si6O16. Adv Mat Res. 2012;585:51–5. 43. Knowles KM, Thompson RP. Growth of devitrite, Na2Ca3Si6O16, in soda-lime-silica glass. J Am Ceram Soc. 2014;97(5):1425–33. 44. Aboud TK, Stoch L, Sroda M. Quartz crystallization in soda-lime-silica glass. Opt Appl. 2005;35:829–36. 45. Patzig C, Hoche T, Dittmer M, Russel C. Temporal evolution of crystallization in MgO/Al2O3/SiO2/ZrO glass-ceramics. Cryst Growth Des. 2012;12(4):2059–67. 46. Zheng W, Cui J, Sheng LI, Chao H, Peng Z, Shen C. Effect of complex nucleation agents on preparation and crystallization of CaO-MgO-Al2O3-SiO2 glass-ceramics for float process. J Non-Cryst Solids. 2016;450:6–11. 47. Khater GA. Influence of Cr2O3, LiF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag. Ceram Int. 2011;37:2193–9. 48. Schmelzer JWP, Abyzov AS. Crystallization of glass-forming melts: New answers to old questions. J Non-Cryst Solids. 2018;501:11–20. 49. Burkhard DJM. Iron-bearing silicate glasses at ambient conditions. J Non-Cryst Solid. 2000;275(3):175–88. 50. Harizanova R, Völksch G, Rüssel C. Microstructures formed during devitrification of Na2O Al2O3 B2O3 SiO2 Fe2O3 glasses. J Mater Sci. 2010;45:1350–3. 51. Karamanov A, Pisciella P, Cantalini C, Pelino M. Influence of Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses made with industrial waste. J Am Ceram Soc. 2000;83(12):3153–7. 52. Magnien V, Neuville DR, Cormier L, Roux J, Hazemann J-L, de Ligny D, et al. Kinetics and mechanisms of iron redox reactions in silicate melts: the effects of temperature and alkali cations. Geochim Cosmochim Acta. 2008;72(8):2157–68. 53. Wisniewski W, Harizanova R, Völksch G, Rüssel C. Crystallization of iron containing glass-ceramics and the transformation of hematite to magnetite. CrystEngComm. 2011;13:4025–31. 54. Fruehan RJ. The rate of reduction of iron oxides by carbon. Metal Trans B. 1977;8B:279–86. 55. Hisa M, Tsutsumi A, Akiyama T. Reduction of iron oxides by nano-sized graphite particles observed in pre-oxidized iron carbide at temperatures around 873K. Mater Trans. 2004;45:1907–10. 56. Nokhrina OI, Rozhihina ID, Hodosov IE. The use of coal in a solid phase reduction of iron. Conf Ser: Mater Sci Eng. 2015;91:1–7.