Инд. авторы: Moroz T.N., Edwards H.G.M., Zhmodik S.M.
Заглавие: Detection of carbonate, phosphate minerals and cyanobacteria in rock from the Tomtor deposit, Russia, by Raman spectroscopy
Библ. ссылка: Moroz T.N., Edwards H.G.M., Zhmodik S.M. Detection of carbonate, phosphate minerals and cyanobacteria in rock from the Tomtor deposit, Russia, by Raman spectroscopy // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. - 2021. - Vol.250. - Art.119372. - ISSN 1386-1425.
Внешние системы: DOI: 10.1016/j.saa.2020.119372; РИНЦ: 45025369; PubMed: 33422877; WoS: 000620634000003;
Реферат: eng: Samples of rock from the Tomtor Nb - REE (rare-earth elements) deposit (Russia) have been investigated by Raman micro-spectroscopy using visible 532 nm wavelength excitation. Raman spectra of different samples of this rock confirm their composition as calcites and other carbonates such as rhodochrosite, and mixed solid solution phases (Ca, Mn, Fe, Mg, Ba, Sr, REE)(CO3). An association between cyanobacteria and the apatite crystals has been noted Cyanobacteria exhibited Raman modes at 1520-1517 cm(-1) located in the double bonds of the central part of the polyene chain of carotenoids. A slight shift of this mode in the apatite-containing samples are dependent upon the compositions of carotenoids, the ratio of the rare earth elements adsorbed by cyanobacteria as well as their interaction with the environment. Laser-induced photoluminescence of REE andMn+2, obtained as an analytical artifact in the Raman spectra, has been observed in most cases with significant spectral intensity. The luminescence emission ofMn(2+), Sm3+, Eu3+, Pr3+, Ho3+, Er3+ in the spectra of the apatite-containing samples obtained with 532 nm excitation can be attributed both to apatite and to other mineral phases with a low concentration which contain these elemental ions. The results obtained in this study allowed us to confirm that the biogenic presence of the cyanobacterial mat had a significant impact on the formation of the unique Nb-REE Tomtor deposit. (C) 2020 Elsevier B.V. All rights reserved.
Ключевые слова: Carbonates; Photoluminescence; Raman spectroscopy; Rare-earth elements; Phosphates;
Издано: 2021
Физ. характеристика: 119372
Цитирование: 1. Tolstov, A.V., Samsonov, N.Yu., Tomtor: geology, technologies, economics. ECO 44 (2014), 36–44, 10.30680/ECO0131-7652-2014-2-36-44. 2. Lapin, A.V., Tolstov, A., Kulikova, I.M., Distribution of REE, Y, Sc, and Th in the unique complex rare-metal ores of the Tomtor deposit. Geochem. Int. 54 (2016), 1061–1078, 10.1134/S0016702916120065. 3. Lazareva, E.V., Zhmodik, S.M., Dobretsov, N.L., Tolstov, A.V., Shcherbov, B.L., Karmanov, N.S., Gerasimov, E.Yu., Bryanskaya, A.V., Major mineras abnormally high-grades ores of the Tomtor deposit (Arctic Siberia). Russ. Geol. and Geophys. 56 (2015), 844–873, 10.1016/j.rgg.2015.05.003. 4. Pokhilenko, N.P., Kryukov, V.A., Tolstov, A.V., Samsonov, N.Yu., Tomtor as Priority Investment Project to Provide Russia with its own Source of Rare Earth Elements. ECO 44 (2014), 22–35, 10.30680/ECO0131-7652-2014-2-22-35. 5. Jordens, A., Cheng, Y.P., Waters, K.E., A review of the benefication of rare earth element bearing minerals. Min. Eng. 41 (2013), 97–114, 10.1016/j.mineng.2012.10.17. 6. Long, K.R., Van Gosen, B.S., Foley, N.K., Condier, D., The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective. Sinding-Larsen, R., Wellmer, F., (eds.) Non-Renewable Resource Issues, 2012, Geoscientific and Societal Challenges, 131–155. 7. Kravchenko, S.M., Pokrovsky, B.G., The Tomtor alkaline ultrabasic massif and related REE-Nb deposits, northern Siberia. Econ. Geol. 90 (1995), 676–689, 10.2113/gsecongeo.90.3.676. 8. N. V. Vladykin, A. B. Kotov, A. S. Borisenko, V. V. Yarmolyuk, N. P. Pokhilenko, E. B. Sal'nikova, A. V. Travin, S. Z. Yakovleva, Age Boundaries of Formation of the Tomtor Alkaline–Ultramafic Pluton: U–Pb and 40Ar/39Ar Geochronological Studies, Dokl. Earth Sci. 454 (2014) 7-11. DOI: 10.1134/S1028334X14010140. 9. Zheleznyak, M.N., Misaylov, I.E., Shatz, M.M., The ecologic-geocryological conditions of the Tomtor. Prospect Protect. Mineral Resour. 4 (2018), 60–64 (In Russ.). 10. Ponomarchuk, V.A., Dobretsov, N.L., Lazareva, E.V., Zhmodik, S.M., Karmanov, N.S., Tolstov, A.V., Pyryaev, A.N., Evidence of microbial-induced mineralization in the rocks of the Tomtor carbonatite complex (Arctic Siberia). Doklady Earth Sci. 490 (2020), 76–80, 10.1134/s1028334x20020117. 11. Bernard, S., Papinea, D., Graphitic Carbons and Biosignatures. Elements 10 (2014), 435–440, 10.2113/gselements.10.6.435. 12. Moroz, T.N., Edwards, H.G.M., Ponomarchuk, V.A., Pyryaev, A.N., Palchik, N.A., Goryaino, S.V., Raman spectra of a graphite–nontronite association in marbles from Oltrek Island (Lake Baikal, Russia). J. Raman Spectrosc., 2019, 10.1002/jrs.5763. 13. Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Jelichka, J., Biomarkers and their Raman spectroscopic signatures: a spectral challenge for analytical astrobiology. Phil. Trans. R. Soc. A, 372, 2014, 20140193, 10.1098/rsta.2014.0193. 14. Jehlička, J., Edwards, H.G.M., Osterrotova, K., Novotna, J., Nedbalova, L., Kopecky, J., Oren, A., Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms:implication for astrobiology. Phil. Trans. R. Soc. A, 372, 2014, 20140199, 10.1098/rsta.2014.0199. 15. Rozanov, A.Yu., Fossil bacteria and a new view at the processes of sedimentation. Soros Educational J. 10 (1999), 63–68. 16. Zhmur, S.I., Kravchenko, S.M., Rozanov, A.Yu., Ye, A., Zhegallo, Genesis of the rich rare-earth-niobium ore of Tomtor in the northern part of the Siberian craton. Dokl. Earth Sci. 339 (1996), 84–87. 17. Jehlička, J., Edwards, H.G.M., Nemec, I., Oren, A., Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiewalength excitation and DFT calculations. Spectrochim. Acta Part A 151 (2015), 459–467, 10.1016/j.saa.2015.06.051. 18. Edwards, H.G.M., Vandenabeele, P., Jorge-Villar, S.E., Carter, E.A., Perez, F.R., Hargreaves, M.D., The Rio Tinto Mars Analogue site: An extremophilic Raman spectroscopic study. Spectrochim. Acta Part A 68 (2007), 1133–1137, 10.1016/j.saa.2006.12.080. 19. Bernard, S., Benzerara, K., Beyssac, O., Brown, G.E., Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks. Geochim. Cosmochim. Acta 74 (2014), 5054–5068, 10.1016/j.gca.2010.06.011. 20. Perri, E., Tucker, M.E., Slowakiewicz, M., Whitaker, F., Bowen, L., Perrotta, I.D., Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses. Sedimentology 65 (2018), 1213–1245, 10.1111/sed.12419. 21. Schiffbauer, J.D., Yin, L.M., Bodnar, R.J., Kaufman, A.J., Meng, F.W., Hu, J., Shen, B., Yuan, X.L., Bao, H.M., Xiao, S.H., Ultrastructural and geochemical characterization of Archean-Paleoproterozoic graphite particles: Implications for recognizing traces of life in highly metamorphosed rocks. Astrobiology 7 (2007), 684–704. 22. de Oliveira, V.E., Miranda, M., Soares, M.C.S., Edwards, H.G.M., de Oliveira, L.F.C., Study of carotenoids in cyanobacteria by Raman spectroscopy. Spectrochim. Acta A 150 (2015), 373–380, 10.1016/j.saa.2015.05.044. 23. V.E. deOliveira, H.V. Castro, H.G.M. Edwards, L. Fernanco, and C. de Oliveira, Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis, J. Raman Spectroscopy 41 (2010) 642-650. DOI: 10.1002,jrs.2493. 24. Colyer, C.L., Kinkade, C.S., Viskari, P.J., Landers, J.P., Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Anal. Bioanal. Chem. 382 (2005), 559–569, 10.1007/s00216-004-3020-4. 25. Edwards, H.G.M., Carcia-Pichel, F., Newton, E.M., Wynn-Williams, D.D., Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim. Acta 56 (2000), 193–200, 10.1016/S1386-1425(99)00218-8. 26. Takaichi, S., Mochimaru, M., Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cellular Mol. Life Sci. 64 (2007), 2607–2619, 10.1007/s00018-007-7190-z. 27. Edwards, H.G.M., Moody, C.D., Jorge Villar, S.E., Wynn-Williams, D.D., Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174 (2005), 560–571, 10.1016/j.icarus.2004.07.029. 28. Roman, M., Marzec, K.M., Grzebelus, E., Simon, P.W., Baranska, M., Baranski, R., Composition and (in) homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging. Spectrochim. Acta A 136 (2015), 1395–1400, 10.1016/j.saa.2014.10.026. 29. Adar, F., Carotenoids—their resonance Raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy 32 (2017), 12–20. 30. Griffith, Advances in the Raman and infrared spectroscopy of minerals, in: R.J.H Clark and R.E. Hester (Eds.), Spectroscopy of Inorganic-based materials, Wiley, Chichester, 1987, pp. 119-186. DOI:10.1016/0160-9327(88)90097-X. 31. White, W.B., The carbonate minerals. Farmer, V.C., (eds.) Infrared Spectra of Minerals, 1974, Mineralogical Society of Great Britain and Ireland, London, 227–284. 32. Lafuente, B., Downs, R.T., Yang, H., Stone, N., The power of databases: the RRUFF project. Armbruster, T., Danisi, R.M., (eds.) Highlights in Mineralogical Crystallography, erlin, 2015, Germany. W. De Gruyter, Berlin, 1–30. 33. Alía, J.M., Díaz de Mera, Y.D., Edwards, H.G.M., Martín, P.G., Andrés, S.L., FT-Raman and infrared spectroscopic study of aragonite-strontianite (CaxSr1-xCO3) solid solution, Spectrochim. Acta Part A-Mol. Biomol. Spectroscopy 53 (1997), 2347–2362, 10.1016/S1386-1425(97)00175-3. 34. Urmos, J., Sharma, S.K., Mackenzie, F.T., Characterization of some biogenic carbonates with Raman spectroscopy. American Min. 76 (1991), 641–646. 35. Boulard, E., Guyot, F., Fique, G., The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions. Phys. Chem. Min. 39 (2012), 239–246, 10.1007/s00269-011-0479-3. 36. Shi, W., Fleet, M.E., Shieh, S.R., High-pressure phase transitions in Ca-Mn carbonates (Ca, Mn)CO3 studied by Raman spectroscopy. American Min. 97 (2012), 999–1001, 10.2138/am.2012.4116. 37. Rividi, N., van Zuilen, M., Philippot, P., Ménez, B., Godard, G., Poidatz, E., Calibration of Carbonate Composition Using Micro-Raman Analysis: Application to Planetary Surface Exploration. Astrobiology 10 (2010), 293–309, 10.1089/ast.2009.0388. 38. Elliott, J.C., Structure and Chemistry of the apatites and other calcium orthophospatrs. Study in Inorganic Chemistry, 1994, Elsevier, Amsterdam. 39. D. C. O'Shea., M. L. Bartlett, R. A. Young, Compositional analysis of apatites with Laser-Raman spectroscopy: (OH, F, Cl) apatites, Archives of Oral Biology 19 (1974) 995–1006. doi:10.1016/0003-9969(74)90086-7. 40. Hughes, J.M., Harlov, D., Rakovan, J.F., Structural variations along the apatite F-OH join. Am. Mineral. 103 (2018), 1981–1987, 10.2138/am-2018-6608. 41. Awonusi, A., Morris, M.D., Tecklenburg, M.M.J., Carbonate Assignment and Calibration in the Raman Spectrum of Apatite. Calcif. Tissue Int. 81 (2007), 46–52, 10.1007/s00223-007-9034-0. 42. Pinzaru, S.C., Muller, C., Brezestean, I., Barchewits, D., Glamuzina, B., Cyanobacteria Detection and Raman Spectroscopy Characterization with a Highly Sensitive. High Resolut. Fiber Optic Portable Raman Syst. Studia UBB Phys. 61 (2016), 99–108. 43. M.J. Llansola-Portoles, A.A. Pascal, B. Robert, 2017. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J. R. Soc. Interface. 14, 20170504. http://dx.doi.org/10.1098 /rsif.2017.0504. 44. Merlin, J.C., Resonance Raman spectroscopy of carotenoids and carotenoid-containin system. Pure and Appl. Chem. 57 (1985), 785–792. 45. Jehlička, J., Edwards, H.G.M., Vítek, P., Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies. Planet. Space Sci. 57 (2009), 606–613, 10.1016/j.pss.2008.05.005. 46. Ceron-Carrasco, J.P., Bastida, A., Zuniga, J., Requena, A., Miguel, B., Density Functional Theory Study of the Stability and Vibrational Spectra of the β-Carotene Isomers. J. Phys. Chem. A 113 (2009), 9899–9907, 10.1021/jp9037446. 47. Koyama, Y., Takatsuka, I., Nakata, M., Tasumi, M., Raman and infrared spectra of the All-trans, 7-cis, 9-cis and 15-cis Isomers of β–Carotene – Key bands distinguishing stretched or terminal-bent configurations from central-bent configurations. J. Raman Spectrosc. 19 (1988), 37–49. 48. Hu, Y., Hashimoto, H., Moine, G., Hengartner, U., Koyama, Y., Unique properties of the 11-cis and 11,11′-di-cis isomers of β-carotene as revealed by electronic absorption, resonance Raman and 1H and 13C NMR spectroscopy and by HPLC analysis of their thermal isomerization. J. Chem. Soc. Perkin Trans. 2 (1997), 2699–2710, 10.1039/a703763e. 49. Vítek, P., Ascaso, C., Artieda, O., Casero, M.C., Wierzchos, J., Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci. Rep., 7(1), 2017, 10.1038/s41598-017-11581-7. 50. Marshall, C.P., Olcott Marshall, A., The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids, Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 368 (2010), 3137–3144, 10.1098/rsta.2010.0016. 51. Y. Sakuragi (2004) Cyanobacterial quinomics:studies of quinones in cyanobacteria. PhD thesis. Pennsylvania State University, State College, PA. 52. Sakuragi, Y., Bryant, D.A., Genetic manipulation of quinone biosynthesis in cyanobacteria. Golbeck, J.H., (eds.) Advances in Photosynthesis and Respiration, 2006, Springer, Dordrecht, 205–222 10.1007/978-1-4020-4256-0_1. 53. H. P.Lamichhane, G. Hastings, G. Calculated Vibrational Properties of Ubisemiquinones. Computational Biology Journal (2013) 1–11. doi:10.1155/2013/807592. 54. Edwards, H.G.M., Villar, S.E.J., Parnell, J., Cockell, Ch.S., Lee, P., Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130 (2005), 917–923, 10.1039/b503533c. 55. Kamennaya, N.A., Ajo-Franklin, C.M., Northen, T., Jansson, C., Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2 (2012), 338–364, 10.3390/min2040338. 56. W Altermann, J. Kazmierczak, A. Oren, D.T. Wright, Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history, Geobiology 4(2006) 147–166. 57. Obst, M., Wehrli, B., Dittrich, M., M, CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology 7 (2009), 324–347, 10.1111/j.1472-4669.2009.00200.x. 58. Couradeau, E., Benzerara, K., Gerard, E., Moreira, D., Bernard, S., Brown, G.E., Lopez-Garcia, P., An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336 (2012), 459–462, 10.1126/science.1216171. 59. Benzerara, K., Skouri-Panet, F., Li, J., Ferard, C., Gugger, M., Laurent, Th., Couradeau, E., Ragon, M., Cosmidis, J., Menguy, N., Margaret-Oliver, I., Tavera, R., López-García, P., Moreira, D., Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. National Academy Sci. 111 (2014), 10933–10938, 10.1073/pnas.1403510111. 60. Gaft, M., Reisfeld, R., Panczer, G., Modern luminescence spectroscopy of minerals and materials, Springer, Berlin, Heidelberg. Cham, 2015, 10.1007/978-3-319-24765-6_1. 61. Gaft, M., Reisfeld, R., Panczer, G., Blank, Ph., Boulon, G., Laser-induced time-resolved luminescence of minerals. Spectrochim. Acta Part A 54 (1998), 1496–1503. 62. MacRae, C.M., Wilson, N.C., Luminescence data basa mineral and materials. Microsc. Microanal. 14 (2008), 184–204, 10.1017/S143192760808029X. 63. Lenz, C., Nasdala, L., Talla, D., Hauzenberger, C., Seitz, R., Kolitsch, U., Laser-induced REE3+ photoluminescence of selected accessory minerals –an “ advantageous artifact” in Raman spectroscopy. Chem. Geol. 415 (2015), 1–16. 64. Bodyl, S., Gzaja, M., Mazura, Z., Optical properties of Pr3+, Sm3+ and Er3+ ions in apatite, fluorite and phosphate glasses. Phys. Procedia 2 (2009), 515–525. 65. Gzaja, M., Bodyl, S., Lisiecki, R., Mazura, Z., Luminescence properties of Pr3+and Sm3+ ions in natural apatites. Phys. Chem. Min. 37 (2010), 425–433, 10.1007/s00269-009-0344-9. 66. Bühn B., Rankin AH, Radtke M., Haller M., Knochel A Burbankite, a (Sr,REE,Na,Ca)-carbonate in fluid inclusions from carbonatite derived fluids: Identification and characterization using Laser Raman spectroscopy, SEMEDX, and synchrotron micro-XRF analysis / / Amer. Miner. 1999. V. 84. P. 1117 -1125. 67. Frost, R.L., Xi, Y., Scholz, R., Tazava, E., Spectroscopic characterization of the phosphate mineral florencite-La – LaAl3(PO4)2(OH, H2O)6, a potential tool in the REE mineral prospection. J. Mol. Struct. 1037 (2013), 148–153, 10.1016/j.molstruc.2012.12.045.