Инд. авторы: Sagatov N.E., Bazarbek A.D.B., Inerbaev T.M., Gavryushkin P.N., Akilbekov A.T., Litasov K.D.
Заглавие: Phase Relations in the Ni-S System at High Pressures from ab Initio Computations
Библ. ссылка: Sagatov N.E., Bazarbek A.D.B., Inerbaev T.M., Gavryushkin P.N., Akilbekov A.T., Litasov K.D. Phase Relations in the Ni-S System at High Pressures from ab Initio Computations // ACS EARTH AND SPACE CHEMISTRY. - 2021. - Vol.5. - Iss. 3. - P.596-603. - ISSN 2472-3452.
Внешние системы: DOI: 10.1021/acsearthspacechem.0c00328; РИНЦ: 46764314; WoS: 000631414400017;
Реферат: eng: Based on the ab initio calculations within the density functional theory and crystal structure prediction algorithms, the structure and stability of compounds in the Ni-S system at pressures of 100-400 GPa were determined. As a result, a homologous series of discrete compounds (Ni and S) consisting of Ni14S-C2/m, Ni13S-R (3) over bar, Ni12S-R (3) over bar, Ni5S-C2/m, and Ni4S-P (1) over bar, Cmcm is revealed. We also confirmed the absence of the stable Febearing compounds between Fe and Fe2S in the studied pressure range. At the Earth's core pressures, 4 wt % of sulfur can be dissolved in solid fcc-Ni without deformation of the structure. Significant deformations in the Ni structure occur at sulfur contents from 4 to 15 wt %. In contrast, up to 0.45 wt % of sulfur could be dissolved in hcp-Fe at 350 GPa and 0 K. For Ni3S, two phases with space groups I (4) over bar and Cmcm were predicted. Ni3S-I (4) over bar is stable at least from 100 GPa, whereas above 330 GPa, it transforms into Ni3S-Cmcm. The pressure of phase transition is almost independent of temperature. The Ni2S is stable in the entire pressure range and undergoes a single-phase transition from the Pnma- to P (6) over bar 2m-phase at 266 GPa and 0 K with a Clapeyron slope of 5 MPa/ K. The S-rich sulfide NiS3 is characterized by Im (3) over barm symmetry and is thermodynamically stable from 100 to 318 GPa. Our new data on Ni sulfides might be important to constrain detailed thermodynamic models for Fe-Ni-bearing Earth and planetary cores.
Ключевые слова: polymorphism; solubility; nickel sulfides; crystal structure prediction; solid solutions; density functional theory;
Издано: 2021
Физ. характеристика: с.596-603
Цитирование: 1. Allègre, C. J.; Poirier, J.-P.; Humler, E.; Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 1995, 134, 515-526, 10.1016/0012-821X(95)00123-T 2. McDonough, W. F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223-253, 10.1016/0009-2541(94)00140-4 3. Stevenson, D. J. Models of the Earth's core. Science 1981, 214, 611-619, 10.1126/science.214.4521.611 4. Mason, B. Composition of the Earth. Nature 1966, 211, 616-618, 10.1038/211616a0 5. Li, J.; Agee, C. B. Element partitioning constraints on the light element composition of the Earth's core. Geophys. Res. Lett. 2001, 28, 81-84, 10.1029/2000GL012114 6. Westerlund, K. J.; Shirey, S. B.; Richardson, S. H.; Carlson, R. W.; Gurney, J. J.; Harris, J. W. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics. Contrib. Mineral. Petrol. 2006, 152, 275, 10.1007/s00410-006-0101-8 7. Bullock, E. S.; Gounelle, M.; Lauretta, D. S.; Grady, M. M.; Russell, S. S. Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body. Geochim. Cosmochim. Acta 2005, 69, 2687-2700, 10.1016/j.gca.2005.01.003 8. Frost, D. J.; McCammon, C. A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389-420, 10.1146/annurev.earth.36.031207.124322 9. Hansen, M.; Anderko, K.; Salzberg, H. W. Constitution of Binary Alloys. J. Electrochem. Soc. 1958, 105, 260C, 10.1149/1.2428700 10. Fei, Y.; Bertka, C. M.; Finger, L. W. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system. Science 1997, 275, 1621-1623, 10.1126/science.275.5306.1621 11. Fei, Y.; Li, J.; Bertka, C. M.; Prewitt, C. T. Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. Am. Mineral. 2000, 85, 1830-1833, 10.2138/am-2000-11-1229 12. Bazhanova, Z. G.; Roizen, V. V.; Oganov, A. R. High-pressure behavior of the Fe-S system and composition of the Earth's inner core. Phys. Usp. 2017, 60, 1025-1032, 10.3367/UFNe.2017.03.038079 13. Tateno, S.; Ozawa, H.; Hirose, K.; Suzuki, T.; I-Kawaguchi, S.; Hirao, N. Fe2S: The most Fe-rich iron sulfide at the Earth's inner core pressures. Geophys. Res. Lett. 2019, 46, 11944-11949, 10.1029/2019GL085248 14. Parise, J. Structure of hazelwoodite (Ni3S2). Acta Crystallogr. B 1980, 36, 1179-1180, 10.1107/S0567740880005523 15. Fleet, M. The crystal structure of a-Ni7S6. Acta Crystallogr. B 1972, 28, 1237-1241, 10.1107/S0567740872004029 16. Fleet, M. Structure of godlevskite, Ni9S8. Acta Crystallogr. C 1987, 43, 2255-2257, 10.1107/S0108270187088176 17. Grice, J. D.; Ferguson, R. B. Crystal structure refinement of millerite (β-NiS). Can. Mineral. 1974, 12, 248-252 18. Liu, Q.; Díaz, A.; Prosvirin, A.; Luo, Z.; Batteas, J. D. Shape-controlled synthesis of nanopyramids and nanoprisms of nickel sulfide (Ni3S4). Nanoscale 2014, 6, 8935-8942, 10.1039/C4NR01196A 19. Miyadai, T.; Takizawa, K.; Nagata, H.; Ito, H.; Miyahara, S.; Hirakawa, K. Neutron diffraction study of NiS2with pyrite structure. J. Phys. Soc. Jpn. 1975, 38, 115-121, 10.1143/JPSJ.38.115 20. Kullerud, G.; Yund, R. A. The Ni-S system and related minerals. J. Petrol. 1962, 3, 126-175, 10.1093/petrology/3.1.126 21. Lin, R. Y.; Hu, D. C.; Chang, Y. A. Thermodynamics and phase relationships of transition metal-sulfur systems: II. The nickel-sulfur system. Metall. Trans. B 1978, 9, 531-538, 10.1007/BF03257200 22. Cheng, Z.; Abernathy, H.; Liu, M. Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 2007, 111, 17997-18000, 10.1021/jp0770209 23. Sto̷len, S.; Gro̷nvold, F.; Westrum, E. F., Jr.; Kolonin, G. R. Heat capacity and thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase Ni3±xS2. J. Chem. Thermodyn. 1991, 23, 77-93, 10.1016/S0021-9614(05)80061-8 24. Campbell, A. J.; Heinz, D. L. Equation of state and high pressure phase transition of NiS in the NiAs structure. J. Phys. Chem. Solids 1993, 54, 5-7, 10.1016/0022-3697(93)90106-2 25. Sowa, H.; Ahsbahs, H.; Schmitz, W. X-ray diffraction studies of millerite NiS under non-ambient conditions. Phys. Chem. Miner. 2004, 31, 321-327, 10.1007/s00269-004-0392-0 26. Prewitt, C. T.; Gramsch, S. A.; Fei, Y. High-pressure crystal chemistry of nickel sulphides. J. Phys. Condens. Matter 2002, 14, 11411-11415, 10.1088/0953-8984/14/44/491 27. Yu, Y. G.; Ross, N. L. Vibrational and thermodynamic properties of Ni3S2polymorphs from first-principles calculations. Phys. Chem. Miner. 2011, 38, 241-249, 10.1007/s00269-010-0399-7 28. Chareev, D. A.; Kurnosov, A. V.; Dubrovinsky, L. S.; Narygina, O. V.; Gavrilenko, P. G.; Zarechnaya, E. Y.; Dubrovinskaya, N. A.; Litvin, Y. A.; Osadchii, E. G. New synthetic high-density nickel sulfide: A plausible component of the Earth's core and terrestrial planets. Dokl. Earth Sci. 2010, 432, 771-774, 10.1134/S1028334X10060139 29. Urakawa, S.; Matsubara, R.; Katsura, T.; Watanabe, T.; Kikegawa, T. Stability and bulk modulus of Ni3S, a new nickel sulfur compound, and the melting relations of the system Ni-NiS up to 10 GPa. Am. Mineral. 2011, 96, 558-565, 10.2138/am.2011.3578 30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169, 10.1103/PhysRevB.54.11169 31. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0 32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/PhysRevLett.77.3865 33. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704, 10.1063/1.2210932 34. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237, 10.1021/ar1001318 35. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172-1182, 10.1016/j.cpc.2012.12.009 36. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188, 10.1103/PhysRevB.13.5188 37. Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616, 10.1103/PhysRevB.40.3616 38. Côté, A. S.; Vočadlo, L.; Brodholt, J. P. Light elements in the core: Effects of impurities on the phase diagram of iron. Geophys. Res. Lett. 2008, 35, L05306, 10.1029/2007GL032788 39. Gavryushkin, P. N.; Popov, Z. I.; Litasov, K. D.; Belonoshko, A. B.; Gavryushkin, A. Stability of B2-type FeS at Earth's inner core pressures. Geophys. Res. Lett. 2016, 43, 8435-8440, 10.1002/2016GL069374 40. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scripta Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021 41. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970 42. McMahan, A. K.; Albers, R. C. Insulating nickel at a pressure of 34 TPa. Phys. Rev. Lett. 1982, 49, 1198-1201, 10.1103/PhysRevLett.49.1198 43. Luo, H.; Greene, R. G.; Ruoff, A. L. β-Po phase of sulfur at 162 GPa: X-ray diffraction study to 212 GPa. Phys. Rev. Lett. 1993, 71, 2943-2946, 10.1103/PhysRevLett.71.2943 44. Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. 2002, 99, 12562-12566, 10.1073/pnas.202427399 45. Laio, A.; Gervasio, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601, 10.1088/0034-4885/71/12/126601 46. Inerbaev, T. M.; Sagatov, N.; Sagatova, D.; Gavryushkin, P. N.; Akilbekov, A. T.; Litasov, K. D. Phase stability in nickel phosphides at high pressures. ACS Earth Space Chem. 2020, 4, 1978-1984, 10.1021/acsearthspacechem.0c00181 47. Gavryushkin, P. N.; Litasov, K. D.; Dobrosmislov, S. S.; Popov, Z. I. High-pressure phases of sulfur: Topological analysis and crystal structure prediction. Phys. Status Solidi B 2017, 254, 1600857 10.1002/pssb.201600857 48. Li, Y.; Vočadlo, L.; Brodholt, J. P. The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core. Earth Planet. Sci. Lett. 2018, 493, 118-127, 10.1016/j.epsl.2018.04.013 49. Gunnæs, A. E.; Olsen, A.; Zagierski, P. T.; Klewe, B.; Karlsen, O. B.; Aasen, A. Crystal structure determination of Ag2Ga by single crystal X-ray diffraction. Z. Kristallogr. Cryst. Mater 1998, 213, 639, 10.1524/zkri.1998.213.12.639 50. Zhang, L.; Fei, Y. Effect of Ni on Fe-FeS phase relations at high pressure and high temperature. Earth Planet. Sci. Lett. 2008, 268, 212-218, 10.1016/j.epsl.2008.01.028 51. Kamada, S.; Ohtani, E.; Terasaki, H.; Sakai, T.; Miyahara, M.; Ohishi, Y.; Hirao, N. Melting relationships in the Fe-Fe3S system up to the outer core conditions. Earth Planet. Sci. Lett. 2012, 359-360, 26-33, 10.1016/j.epsl.2012.09.038 52. Kamada, S.; Terasaki, H.; Ohtani, E.; Sakai, T.; Kikegawa, T.; Ohishi, Y.; Hirao, N.; Sata, N.; Kondo, T. Phase relationships of the Fe-FeS system in conditions up to the Earth's outer core. Earth Planet. Sci. Lett. 2010, 294, 94-100, 10.1016/j.epsl.2010.03.011