Цитирование: | 1. Allègre, C. J.; Poirier, J.-P.; Humler, E.; Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 1995, 134, 515-526, 10.1016/0012-821X(95)00123-T
2. McDonough, W. F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223-253, 10.1016/0009-2541(94)00140-4
3. Stevenson, D. J. Models of the Earth's core. Science 1981, 214, 611-619, 10.1126/science.214.4521.611
4. Mason, B. Composition of the Earth. Nature 1966, 211, 616-618, 10.1038/211616a0
5. Li, J.; Agee, C. B. Element partitioning constraints on the light element composition of the Earth's core. Geophys. Res. Lett. 2001, 28, 81-84, 10.1029/2000GL012114
6. Westerlund, K. J.; Shirey, S. B.; Richardson, S. H.; Carlson, R. W.; Gurney, J. J.; Harris, J. W. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics. Contrib. Mineral. Petrol. 2006, 152, 275, 10.1007/s00410-006-0101-8
7. Bullock, E. S.; Gounelle, M.; Lauretta, D. S.; Grady, M. M.; Russell, S. S. Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body. Geochim. Cosmochim. Acta 2005, 69, 2687-2700, 10.1016/j.gca.2005.01.003
8. Frost, D. J.; McCammon, C. A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389-420, 10.1146/annurev.earth.36.031207.124322
9. Hansen, M.; Anderko, K.; Salzberg, H. W. Constitution of Binary Alloys. J. Electrochem. Soc. 1958, 105, 260C, 10.1149/1.2428700
10. Fei, Y.; Bertka, C. M.; Finger, L. W. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system. Science 1997, 275, 1621-1623, 10.1126/science.275.5306.1621
11. Fei, Y.; Li, J.; Bertka, C. M.; Prewitt, C. T. Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. Am. Mineral. 2000, 85, 1830-1833, 10.2138/am-2000-11-1229
12. Bazhanova, Z. G.; Roizen, V. V.; Oganov, A. R. High-pressure behavior of the Fe-S system and composition of the Earth's inner core. Phys. Usp. 2017, 60, 1025-1032, 10.3367/UFNe.2017.03.038079
13. Tateno, S.; Ozawa, H.; Hirose, K.; Suzuki, T.; I-Kawaguchi, S.; Hirao, N. Fe2S: The most Fe-rich iron sulfide at the Earth's inner core pressures. Geophys. Res. Lett. 2019, 46, 11944-11949, 10.1029/2019GL085248
14. Parise, J. Structure of hazelwoodite (Ni3S2). Acta Crystallogr. B 1980, 36, 1179-1180, 10.1107/S0567740880005523
15. Fleet, M. The crystal structure of a-Ni7S6. Acta Crystallogr. B 1972, 28, 1237-1241, 10.1107/S0567740872004029
16. Fleet, M. Structure of godlevskite, Ni9S8. Acta Crystallogr. C 1987, 43, 2255-2257, 10.1107/S0108270187088176
17. Grice, J. D.; Ferguson, R. B. Crystal structure refinement of millerite (β-NiS). Can. Mineral. 1974, 12, 248-252
18. Liu, Q.; Díaz, A.; Prosvirin, A.; Luo, Z.; Batteas, J. D. Shape-controlled synthesis of nanopyramids and nanoprisms of nickel sulfide (Ni3S4). Nanoscale 2014, 6, 8935-8942, 10.1039/C4NR01196A
19. Miyadai, T.; Takizawa, K.; Nagata, H.; Ito, H.; Miyahara, S.; Hirakawa, K. Neutron diffraction study of NiS2with pyrite structure. J. Phys. Soc. Jpn. 1975, 38, 115-121, 10.1143/JPSJ.38.115
20. Kullerud, G.; Yund, R. A. The Ni-S system and related minerals. J. Petrol. 1962, 3, 126-175, 10.1093/petrology/3.1.126
21. Lin, R. Y.; Hu, D. C.; Chang, Y. A. Thermodynamics and phase relationships of transition metal-sulfur systems: II. The nickel-sulfur system. Metall. Trans. B 1978, 9, 531-538, 10.1007/BF03257200
22. Cheng, Z.; Abernathy, H.; Liu, M. Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 2007, 111, 17997-18000, 10.1021/jp0770209
23. Sto̷len, S.; Gro̷nvold, F.; Westrum, E. F., Jr.; Kolonin, G. R. Heat capacity and thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase Ni3±xS2. J. Chem. Thermodyn. 1991, 23, 77-93, 10.1016/S0021-9614(05)80061-8
24. Campbell, A. J.; Heinz, D. L. Equation of state and high pressure phase transition of NiS in the NiAs structure. J. Phys. Chem. Solids 1993, 54, 5-7, 10.1016/0022-3697(93)90106-2
25. Sowa, H.; Ahsbahs, H.; Schmitz, W. X-ray diffraction studies of millerite NiS under non-ambient conditions. Phys. Chem. Miner. 2004, 31, 321-327, 10.1007/s00269-004-0392-0
26. Prewitt, C. T.; Gramsch, S. A.; Fei, Y. High-pressure crystal chemistry of nickel sulphides. J. Phys. Condens. Matter 2002, 14, 11411-11415, 10.1088/0953-8984/14/44/491
27. Yu, Y. G.; Ross, N. L. Vibrational and thermodynamic properties of Ni3S2polymorphs from first-principles calculations. Phys. Chem. Miner. 2011, 38, 241-249, 10.1007/s00269-010-0399-7
28. Chareev, D. A.; Kurnosov, A. V.; Dubrovinsky, L. S.; Narygina, O. V.; Gavrilenko, P. G.; Zarechnaya, E. Y.; Dubrovinskaya, N. A.; Litvin, Y. A.; Osadchii, E. G. New synthetic high-density nickel sulfide: A plausible component of the Earth's core and terrestrial planets. Dokl. Earth Sci. 2010, 432, 771-774, 10.1134/S1028334X10060139
29. Urakawa, S.; Matsubara, R.; Katsura, T.; Watanabe, T.; Kikegawa, T. Stability and bulk modulus of Ni3S, a new nickel sulfur compound, and the melting relations of the system Ni-NiS up to 10 GPa. Am. Mineral. 2011, 96, 558-565, 10.2138/am.2011.3578
30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169, 10.1103/PhysRevB.54.11169
31. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/PhysRevLett.77.3865
33. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704, 10.1063/1.2210932
34. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237, 10.1021/ar1001318
35. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172-1182, 10.1016/j.cpc.2012.12.009
36. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188, 10.1103/PhysRevB.13.5188
37. Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616, 10.1103/PhysRevB.40.3616
38. Côté, A. S.; Vočadlo, L.; Brodholt, J. P. Light elements in the core: Effects of impurities on the phase diagram of iron. Geophys. Res. Lett. 2008, 35, L05306, 10.1029/2007GL032788
39. Gavryushkin, P. N.; Popov, Z. I.; Litasov, K. D.; Belonoshko, A. B.; Gavryushkin, A. Stability of B2-type FeS at Earth's inner core pressures. Geophys. Res. Lett. 2016, 43, 8435-8440, 10.1002/2016GL069374
40. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scripta Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
41. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
42. McMahan, A. K.; Albers, R. C. Insulating nickel at a pressure of 34 TPa. Phys. Rev. Lett. 1982, 49, 1198-1201, 10.1103/PhysRevLett.49.1198
43. Luo, H.; Greene, R. G.; Ruoff, A. L. β-Po phase of sulfur at 162 GPa: X-ray diffraction study to 212 GPa. Phys. Rev. Lett. 1993, 71, 2943-2946, 10.1103/PhysRevLett.71.2943
44. Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. 2002, 99, 12562-12566, 10.1073/pnas.202427399
45. Laio, A.; Gervasio, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601, 10.1088/0034-4885/71/12/126601
46. Inerbaev, T. M.; Sagatov, N.; Sagatova, D.; Gavryushkin, P. N.; Akilbekov, A. T.; Litasov, K. D. Phase stability in nickel phosphides at high pressures. ACS Earth Space Chem. 2020, 4, 1978-1984, 10.1021/acsearthspacechem.0c00181
47. Gavryushkin, P. N.; Litasov, K. D.; Dobrosmislov, S. S.; Popov, Z. I. High-pressure phases of sulfur: Topological analysis and crystal structure prediction. Phys. Status Solidi B 2017, 254, 1600857 10.1002/pssb.201600857
48. Li, Y.; Vočadlo, L.; Brodholt, J. P. The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core. Earth Planet. Sci. Lett. 2018, 493, 118-127, 10.1016/j.epsl.2018.04.013
49. Gunnæs, A. E.; Olsen, A.; Zagierski, P. T.; Klewe, B.; Karlsen, O. B.; Aasen, A. Crystal structure determination of Ag2Ga by single crystal X-ray diffraction. Z. Kristallogr. Cryst. Mater 1998, 213, 639, 10.1524/zkri.1998.213.12.639
50. Zhang, L.; Fei, Y. Effect of Ni on Fe-FeS phase relations at high pressure and high temperature. Earth Planet. Sci. Lett. 2008, 268, 212-218, 10.1016/j.epsl.2008.01.028
51. Kamada, S.; Ohtani, E.; Terasaki, H.; Sakai, T.; Miyahara, M.; Ohishi, Y.; Hirao, N. Melting relationships in the Fe-Fe3S system up to the outer core conditions. Earth Planet. Sci. Lett. 2012, 359-360, 26-33, 10.1016/j.epsl.2012.09.038
52. Kamada, S.; Terasaki, H.; Ohtani, E.; Sakai, T.; Kikegawa, T.; Ohishi, Y.; Hirao, N.; Sata, N.; Kondo, T. Phase relationships of the Fe-FeS system in conditions up to the Earth's outer core. Earth Planet. Sci. Lett. 2010, 294, 94-100, 10.1016/j.epsl.2010.03.011
|