Инд. авторы: Dobretsov N.L., Buslov M.M., Vasilevskiy A.N., Zhmodik S.M., Kotlyarov A.V.
Заглавие: First Results and Prospects of a New Approach to the Study of Active Geologic Processes by Space and Ground Instrumental Measurements (by the Example of Kamchatka and the Central Asian Orogenic Belt)
Библ. ссылка: Dobretsov N.L., Buslov M.M., Vasilevskiy A.N., Zhmodik S.M., Kotlyarov A.V. First Results and Prospects of a New Approach to the Study of Active Geologic Processes by Space and Ground Instrumental Measurements (by the Example of Kamchatka and the Central Asian Orogenic Belt) // Russian Geology and Geophysics. - 2021. - Vol.62. - Iss. 1. - P.44-67. - ISSN 1068-7971. - EISSN 1878-030X.
Внешние системы: DOI: 10.2113/RGG20204227; РИНЦ: 46102010; WoS: 000611533000004;
Реферат: eng: The use of satellite-geological information permits generalization of studies of various active geologic processes in a new way. As reference examples, we consider geologic regions extensively covered by research with our contribution. The joint use of satellite images, maps of gravity anomalies, and seismic-tomography data for Kamchatka made it possible to construct 3D models of surficial and deep-seated (depths from 10-50 to 650 km) volcanic structures. For young volcanosedimentary structures of Kamchatka, it is possible to trace the interaction of various processes, from crystallization of magmas in magma chambers to ore and oil formation in calderas. Ancient tectonic structures and superposed Cenozoic deformations in the Tien Shan, Altai, and Baikal regions are clearly displayed in satellite images and on maps of gravity anomalies. The long-range impact of the Indo-Eurasian collision on the Tien Shan, Altai, and Baikal regions was expressed as shearing, which resulted in the most contrasting structures in the zones of junction of regional faults and along the framing of cratonal structures. The active structures of Gomy Altai contain numerous travertines, whose abundance is correlated with seismic activity. The mass formation of methane and gas hydrates in Lake Baikal might be related to mantle plume fluids.
Ключевые слова: EVOLUTION; TECTONICS; GEODYNAMICS; FAULT ZONE; GRAVITY-FIELD; SIBERIAN CRATON; GORNY ALTAI; MANTLE STRUCTURE BENEATH; interdisciplinary research; paleotravertines; gas hydrates; mantle plumes; long-range impact of the Indo-Eurasian collision; correlation of geological and geophysical data; remote sensing; gravity maps; NORTHERN TIEN-SHAN; BAIKAL;
Издано: 2021
Физ. характеристика: с.44-67
Цитирование: 1. Agatova, А.R., Nepop, R.K., Barinov, V.V., Nazarov, А.N., Myg-lan, V.S., 2014. The first dating of strong Holocene earthquakes in Gorny Altai using long-term tree-ring chronologies. Russian Geology and Geophysics (Geologiya i Geofizika) 55 (9), 1065–1073 (1344–1355). 2. Andersen, O.B., Knudsen, P., Kenyon, S., Holmes, S., 2014. Global and arctic marine gravity field from recent satellite altimetry (DTU13), in: Proc. 76th EAGE Conference and Exhibition 2014: Experience the Energy – Incorporating SPE EUROPEC 2014. Amsterdam, pp. 3049–3053. 3. Antonov, Е.Yu., Mogilatov, V.S., Epov, M.I., 2019. Effect of transmitter current waveform on transient electromagnetic responses. Russian Geology and Geophysics (Geologiya i Geofizika) 60 (4), 492–499 (578–587). 4. Bogdanov, N.А., Dobretsov, N.L., 2002. The Okhotsk volcanic oceanic plateau. Russian Geology and Geophysics (Geologiya i Geofizika) 43 (2), 87–99 (101–114). 5. Buslov, М.М., 2011. Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russian Geology and Geophysics (Geologiya i Geofizika) 52 (1), 52–71 (66–90). 6. Buslov, М.М., 2012. Geodynamic nature of the Baikal Rift Zone and its sedimentary filling in the Cretaceous–Cenozoic: the effect of the far-range impact of the Mongol-Okhotsk and Indo-Eurasian collisions. Russian Geology and Geophysics (Geologiya i Geofizika) 53 (9), 955–962 (1245–1255). 7. Buslov, М.М., Zykin, V.S., Novikov, I.S. Delvaux, D., 1999. Cenozoic history of the Chuya depression (Gorny Altai): structure and geodynamics. Russian Geology and Geophysics (Geologiya i Geofizika) 40 (12), 1687–1701 (1720–1736). 8. Buslov, М.М., Watanabe, T., Smirnova, L.V., Fujiwara, I., Iwata, K., De Grave, J., Semakov, N.N., Travin, A.V., Kir’yanova, А.P., Kokh, D.A., 2003. Role of strike-slip faulting in Late Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan regions. Russian Geology and Geophysics (Geologiya i Geofizika) 44 (1–2), 47–71 (49–75). 9. Buslov, M.M., De Grave, J., Bataleva, E.A., Batalev, V.Yu., 2007. Cenozoic tectonics and geodynamic evolution of the Kyrgyz Tien Shan Mountains: A review of geological, thermochronological and geophysical. J. Asian Earth Sci. 29, 205–214. 10. Buslov, М.М., Kokh, D.A., De Grave, J., 2008. Mesozoic-Cenozoic tectonics and geodynamics of Altai, Tien Shan, and Northern Kazakhstan, from apatite fission-track data. Russian Geology and Geophysics (Geologiya i Geofizika) 49 (9), 648–654 (862–870). 11. Buslov, М.М., Geng, H., Travin, А.V., Otgonbaatar, D., Kulikova, А.V., Chen Ming, Glorie, S.G., Semakov, N.N., Rubanova, Е.S., Abildaeva, М.А., Voitishek, E.E., Trofimova, D.А., 2013. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai– Sayan folded region. Russian Geology and Geophysics (Geologiya i Geofizika) 54 (10), 1250–1271 (1600–1628). 12. De Grave, J., Glorie, S., Buslov, M.M., Stockli, D.F., McWilliams, M.O., Batalev, V.Yu., Van den Haute, P., 2013. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res. 23, 998–1020. 13. De Pelsmaeker, E., Glorie, S., Buslov, M.M., Zhimulev, F.I., Poujol, M., Korobkin, V.V., Vanhaecke, F., Vetrov, E.V., De Grave, J., 2015. Late-Paleozoic emplacement and Mezo-Cenozoic reactivation of the southern Kazakhstan granitoid basement. Tectonophysics 622, 416–433. 14. Deev, Е.V., 2019. Localization zones of ancient and historical earthquakes in Gorny Altai. Izv. Phys. Sol. Earth 55 (3), 451–470, doi:10.1134/S1069351319030030. 15. Deev, Е.V., Sokol, E.V., Ryapolova, Yu.M., Kokh, S.N., Rusanov, G.G., 2017. Quaternary travertines of the Kurai fault zone (Gorny Altai). Dokl. Earth Sci. 473 (1), 261–265, doi:10.1134/S1028334X17030023. 16. Delvaux, D., Cloetingh, S., Beekman, F., Sokoutis, D., Burov, E., Buslov, M.M., Abdrakhmatov, K.E., 2013. Basin evolution in a folding lithosphere: Altai–Sayan and Tien Shan belts in Central Asia. Tectonophysics 602, 194–222. 17. Devyatkin, Е.V., 1965. Cenozoic deposits and neotectonics of the South-Eastern Altai (Trans. GIN AN SSSR, Issue 126) [in Russian]. Nauka, Мoscow. 18. Dobretsov, N.L., 2020. Plate tectonics vs. plume tectonics: possible models and typical cases. Russian Geology and Geophysics (Geologiya i Geofizika) 61 (5–6), 502–526 (617–647). 19. Dobretsov, N.L., Vasilevskiy, А.N., 2018. Gravity field, surface topography, and volcanic complexes of Kamchatka and its junction with the Aleutian arc. Russian Geology and Geophysics (Geologiya i Geofizika) 59 (7), 780–802 (970–997). 20. Dobretsov, N.L., Vasilevskiy, А.N., 2019. Postglacial uplifts: record in the gravity field and in Neogene–Quaternary structures. Russian Geology and Geophysics (Geologiya i Geofizika) 60 (12), 1327– 1352 (1661–1691). 21. Dobretsov, N.L., Berzin, N.А., Buslov, М.М., Ermikov, V.D., 1995. General aspects of the evolution of the Altai region and the interrelationships between its basement pattern and the neotectonic structural development. Russian Geology and Geophysics (Geologiya i Geofizika) 36 (10), 3–15 (5–19). 22. Dobretsov, N.L., Buslov, М.М., Delvaux, D., Berzin, N.A., Ermikov, V.D., 1996. Meso-and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes. Int. Geol. Rev. 38, 430–466. 23. Dobretsov, N.L., Buslov, М.М., De Grave, J., Sklyarov, Е.V., 2013. Interplay of magmatism, sedimentation, and collision processes in the Siberian craton and the flanking orogens. Russian Geology and Geophysics (Geologiya i Geofizika) 54 (10), 1135–1149 (1451–1471). 24. Dobretsov, N.L., Lazareva, Е.V., Zhmodik, S.М., Bryanskaya, А.V., Morozova, V.V., Tikunova, N.V., Peltek, S.E., Karpov, G.A., Taran, О.P., Ogorodnikova, О.L., Kirichenko, I.S., Rosanov, А.S., Babkin, I.V., Shuvaeva, О.V., Chebykin, Е.P., 2015. Geological, hydrochemical and microbiological characteristics of the Oil site of the Uzon caldera (Kamchatka). Russian Geology and Geophysics (Geologiya i Geofizika) 56 (1–2), 39–63 (56–88). 25. Dobretsov, N.L., Buslov, М.М., Vasilevsky, А.N., Vetrov, Е.V., Nevedrova, N.N., 2016a. Cenozoic history of topography in southeastern Gorny Altai: thermochronology and resistivity and gravity records. Russian Geology and Geophysics (Geologiya i Geofizika) 57 (11), 1525–1534 (1937–1948). 26. Dobretsov, N.L., Simonov, V.A., Kotlyarov, А.V., Kulakov, R.I., Karmanov, N.S., 2016b. Physicochemical parameters of crystallization of melts in intermediate suprasubduction chambers (by the example of Tolbachik and Ichinskii volcanoes, Kamchatka Peninsula). Russian Geology and Geophysics (Geologiya i Geofizika) 57 (7), 993–1015 (1265–1291). 27. Dobretsov, N.L., Buslov, М.М., Rubanova, Е.S., Vasilevsky, А.N., Kulikova, А.V., Bataleva, Е.А., 2017a. Middle-Late Paleozoic geodynamic complexes and structure of Gorny Altai and their record in gravity data. Russian Geology and Geophysics (Geologiya i Geofizika) 58 (11), 1277–1288 (1617–1632). 28. Dobretsov, N.L., Simonov, V.A., Kulakov, I.Yu., Kotlyarov, А.V., 2017b. Migration of fluids and melts in subduction zones and general aspects of thermophysical modeling in geology. Russian Geology and Geophysics (Geologiya i Geofizika) 58 (5), 571–585 (701–722). 29. Dobretsov, N.L., Buslov, М.М., Vasilevsky, А.N., 2019a. Geodynamic complexes and structures of Transbaikalia: Record in gravity data. Russian Geology and Geophysics (Geologiya i Geofizika) 60 (3), 254–266 (301–317). 30. Dobretsov, N.L., Simonov, V.A., Kotlyarov, А.V., Karmanov, N.S., 2019b. Physicochemical parameters of magmatism of the Uksichan and Ichinsky volcanoes (Sredinnyi ridge, Kamchatka): Data on melt inclusions. Russian Geology and Geophysics (Geologiya i Geofizika) 60 (10), 1077–1100 (1353–1383). 31. Förste, Ch., Bruima, S.L., Abrikosov, O., Lemoine, J.-M., Marty J.-C., Flechtner, F., Balmino, G., Barthelmes, F., Bianale, R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, doi:10.5880/icgem.2015.1. 32. French, S.W., Romanowiez, B., 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99, doi:10.1038/nature14876. 33. Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Elburg, M.A., Van den Haute, P., 2012. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry. Tectonophysics 544–545, 75–92, doi: 10.1016/j.tecto.2012.03.035. 34. Guillot, S., Goussina, F., Airaghi, L., Replumaza, A., de Sigoyer, J., Cordier, C., 2019. How and when did the Tibetan Plateau grow? Russian Geology and Geophysics (Geologiya i Geofizika) 60 (9), 957–977 (1207–1230). 35. Irwin, W.P., Barnes, I., 1980. Tectonic relations of carbon dioxide discharges and earthquakes. J. Geophys. Res. 85, 3115–3121. 36. Isaev, V.P., 2019. Problems of oil and gas potential of the Baikal rift, in: Rasskazova, S.V., Primina, S.P. (Eds.), Rifting, Orogenesis, and Accompanied Processes: Proc. IV All-Russian symposium with the participation of foreign scientists, dedicated to the 90th anniversary of academician N.A. Logachev [in Russian]. IZK SO RAN, Irkutsk, pp. 72–74. 37. Jaxybulatov, K., Koulakov, I.Yu., Dobretsov, N.L., 2013. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results. Solid Earth 4, 59–73, doi:10.5194/se-4-59-2013. 38. Jolivet, M., Ritz, J.F., Vassallo, R., Larroque, C., Braucher, R., Todbileg, M., Chauvet, A., Sue, C., Arnaud, N., De Vicente, R., Arzhanikova, A., Arzhanikov, S., 2007. Mongolian summits: An uplifted, flat, old but still preserved erosion surface. Geology 35 (10), 871– 874. 39. Khlystov, О.М., Zemskaya, Т.I., Sitnikova, Т.Ya., Mekhanikova, I.V., Kaigorodova, I.А., Gorshkov, А.G., Timoshkin, О.А., Shubenkova, О.V., Chernitsyna, S.М., Lomakina, А.V., Likhoshvai, А.V., Sagalevich, А.М., Moskvin, V.I., Peresypkin, V.I., Belyaev, N.A., Slipenchuk, М.V., Tulokhonov, А.К., Grachev, М.А., 2009. Bottom bituminous constructions and biota inhabiting them according to investigation of Lake Baikal with the Mir submersibles. Dokl. Earth Sci. 429 (1), 1333–1336, doi:10.1134/S1028334X09080200. 40. Khlystov, O.M., Khabuev, A.V., Minami, H., Hachikubo, A., Krylov, A.A., 2018. Gas hydrates in Lake Baikal. Limnol. Freshwat. Biol. 1, 66–70, doi:10.31951/2658-3518-2018-A-1-66. 41. Kirichenko, I.S., Lazareva, Е.V., Zhmodik, S.M., Dobrezov, N.L., Belyanin, D.K., Miroshnichenko, L.V., 2019. Modern mineral formation in the thermal Lake Fumarolnoe (Uzon Caldera, Kamchatka) is the key to paleoreconstruction. Proc. Russ. Mineral. Soc. 148 (1), 3–15, doi:10.30695/zrmo/2019.1481.00. 42. Kokh, S.N., Sokol, E.V., Deev, E.V., Ryapolova, Yu.M., Rusanov, G.G., Tomilenko, A.A., Bul’bak, T.A., 2017. Post-Late Glacial calcareous tufas from the Kurai fault zone (Southeastern Gorny Altai, Russia). Sediment. Geol. 355, 1–19. 43. Kontorovich, А.E., Drobot, D.I., Presnova, R.N., 1989. Geochemistry of naphthides and the problem of Baikal oil genesis. Sovetskaya Geologiya, No. 2, 21–29. 44. Kontorovich, А.E., Kashirtsev, V.A., Moskvin, V.I., Burshtein, L.M., Zemskaya, Т.I., Kostyreva, Е.А., Kalmychkov, G.V., Khlystov, О.М., 2007. Petroleum potential of Baikal deposits. Russian Geology and Geophysics (Geologiya i Geofizika) 48 (12), 1046– 1053 (1346–1356). 45. Koulakov, I.Yu., 2008. Upper mantle structure beneath southern Siberia and Mongolia, from regional seismic tomography. Russian Geology and Geophysics (Geologiya i Geofizika) 49 (3), 187–196 (248–261). 46. Koulakov, I., Bushenkova, N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times. Tectonophysics 486, 81–100. 47. Koulakov, I.Yu., Kukarina, Е.V., Gordeev, Е.I., Chebrov, V.N., Vernikovsky, V.A., 2016. Magma sources in the mantle wedge beneath the volcanoes of the Klyuchevskoy group and Kizimen based on seismic tomography modeling. Russian Geology and Geophysics (Geologiya i Geofizika) 57 (1), 82–94 (109–124). 48. Koulakov, I., Gerya, T., Rastogi, B.K., Jakovlev, A., Medved, I., Kayal, J.R., El Khrepy, S., Al-Arifi, N., 2018. Growth of mountain belts in central Asia triggers a new collision zone in central India. Sci. Rep. 8, 10710, doi:10.1038/s41598-018-29105-2. 49. Koulakov, I., Komzeleva, V., Abkadyrov, I., Kugaenko, Y., El Khrepy, S., Al Arifi, N., 2019. Unrest of the Udina volcano in Kamchatka inferred from the analysis of seismicity and seismic tomography. J. Volcanol. Geotherm. Res. 379, 45–59. 50. Lai, S.C., Qin, J.F., Khan, J., 2014. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau. Gondwana Res. 25, 1501–1516. 51. Lomtev, V.L., 2017. Structure of the Kuril-Kamchatka trench northern end and surrounding areas. Vestnik Sakhalinskogo Museya, No. 1 (24), 224–236. 52. Lunina, O.V., Gladkov, A.S., Novikov, I.S., Agatova, A.R., Vysotskii, E.M., Emanov, A.A., 2008. Geometry of the fault zone of the 2003 Ms = 7.5 Chuya earthquake and associated stress fields, Gorny Altai. Tectonophysics 453, 276–294, doi:10.1016/j.tec-to.2007.10.010. 53. Metelkin, D.V., Vernikovsky, V.A., Kazansky A.Yu., Wingate, M.T.D., 2010. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Res. 18, 400–419, doi:10.1016/j. gr.2009.12.008. 54. Metelkin, D.V., Vernikovsky, V.А., Kazansky, А.Yu., 2012. Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions. Russian Geology and Geophysics (Geologiya i Geofizika) 53 (7), 675–688 (883–899). 55. Metelkin, D.V., Kazansky, A.Yu., 2018. Geotectonics and Geodynamics: Basics of Magnetotectonics. Study Guide for Graduate Students [in Russian]. Yurait, Moscow. 56. Pavlova, О.N., Bukin, S.V., Kostyreva, Е.А., Moskvin, V.I., Manakov, А.Yu., Morozov, I.V., Galachyants, Yu.P., Khabuev, А.V., Zemskaya, Т.I., 2019. Experimental transformation of organic matter by the microbial community from bottom sediments of Academichesky Ridge (Lake Baikal). Russian Geology and Geophysics (Geologiya i Geofizika) 60 (8), 926–937 (1171–1184). 57. Pavlova, О.N., Izosimova, О.N., Gorshkov, А.G., Novikova, А.S., Bukin, S.V., Ivanov, V.G., Khlystov, О.M., Zemskaya, Т.I., 2020. Current state of deep oil seepage near Cape Gorevoi Utes. Russian Geology and Geophysics (Geologiya i Geofizika) 61 (9), 1171– 1184 (1231–1240). 58. Pozdnyakova, N.I., Deev, E.V., Dublyansky, Yu.V., Sokol, E.V., Kokh, S.N., Turova, I.V., Rusanov G.G., 2019. Travertines of the southeastern Gorny Altai: connection with fault displacement and paleoearthquakes, in: Proc. Int. Jub. Sci. Conf “Remote and Ground-Based Earth Observation in Central Asia” [in Russian]. Bishkek, pp. 59–63. 59. Rasskazov, S.V. Ailo, Y., Sun, Y.-M., Xie, Zh., Yang, Ch., Chuvashova, I.S., 2016. Final eruptions of the central Baikal Rift System in the context of volcanic events in Asia. Eurasia in Cenozoic. Stratigraphy, Paleoecology, Cultures, No. 5, 19–27. 60. Rebetsky, Yu.L., Kuzikov, S.I., 2016. Active faults of the northern Tien Shan: tectonophysical zoning of seismic risks. Russian Geology and Geophysics (Geologiya i Geofizika) 57 (6), 967–983 (1225–1250). 61. Rychkova, К.М., Ayunova, О.D., 2019. Helium isotope ratios in spring of the Tunka-Oka-Sayan rift zone (East Sayan area): correlation with heat flow. Russian Geology and Geophysics (Geologiya i Geofizika) 60 (9), 1008–1017 (1269–1280). 62. Sager, W.W., Sano, T., Geldmacher, J., and the Expedition 324 Scientists, 2010. Proceedings of the integrated ocean drilling program. Integrated Ocean Drilling Program Management International Incorporation, Tokyo, Vol. 324. 63. Simakin, A., Salova, T., Devyatova, V., Zelensky, M., 2015. Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik. J. Volcanol. Geotherm. Res. 307, 210–221, doi:10.1016/j.jvol-geores.2015.10.018. 64. Spichak, V.V., 2020. Modern methods of joint analysis and inversion of geophysical data. Russian Geology and Geophysics (Geologiya i Geofizika) 61 (3), 341–357 (422–443). 65. Timofeev, V.Yu., Kazansky, А.Yu., Ardukov, D.G., Metelkin, D.V., Gornov, P.Yu., Shestakov, N.V., Boiko, Е.V., Timofeev, А.V., Gilmanova, G.Z., 2011. About the rotation parameters of the Siberian domain and its eastern frame in different geological epochs. Tikhookeanskaya Geologiya 30 (4), 21–31. 66. Torsvik, T.H., Cocks, L.R., 2017. Earth History and Palaeogeography. Cambridge University press. 67. Travin, А.V., 2016. Thermochronology of Early Paleozoic collisional and subduction-collisional structures in Central Asia. Russian Geology and Geophysics (Geologiya i Geofizika) 57 (3), 434–450 (553–574). 68. Vassallo, R., Jolivet, M., Ritz, J.F., Braucher, R., Larroque, C., Sue, C., Todbileg, M., Javkhlanbold, D., 2007. Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis. Earth Planet. Sci. Lett. 259, 333–346. 69. Vetrov, Е.V., Buslov, М.М., De Grave, J., 2016. Evolution of tectonic events and topography of the southeastern Gorny Altai in the Late Mesozoic–Cenozoic (data from apatite fission track thermochronology). Russian Geology and Geophysics (Geologiya i Geofizika) 57 (1), 125–142. 70. Yarmoluk, V.V., Kuzmin, М.I., Kozlovsky, А.М., 2013. Late Paleozoic-Early Mesozoic within-plate magmatism in North Asia: Traps, rifts, giant batholiths, and the geodynamics of their origin. Petrology 21 (2), 101–126, doi:10.1134/S0869591113010062. 71. Yin, A., Harrison, T.M., 2000. Geological evolution of the Himalayan-Tibetan orogeny. Ann. Rev. Earth Planet. Sci. 28, 211–280. 72. Zorin, Yu.A., Turutanov, Е.Kh., 2005. Plumes and geodynamics of the Baikal Rift Zone. Russian Geology and Geophysics (Geologiya i Geofizika) 46 (7), 669–682 (685–699). 73. Zykin, V.S., Kazansky, А.Yu., 1995. Stratigraphy and paleomagnetism of Cenozoic (pre-Quaternary) deposits of the Chui depression of Gorny Altai. Russian Geology and Geophysics (Geologiya i Geo-fizika) 36 (10), 67–80 (75–90).