Цитирование: | 1. Andersson, A., The biogeochemistry of mercury in the environment. Nriagu, J.O., (eds.) Mercury in Soils, 1979, Elsevier/North Holland Biomedical Press, Amsterdam, the Netherlands, 79–112.
2. Anjum, N.A., Ahmad, I., Válega, M., Pacheco, M., Figueira, E., Duarte, A.C., Pereira, E., Impact of seasonal fluctuations on the sediment-mercury, its accumulation and partitioning in Halimione portulacoides and Juncus maritimus collected from Ria de Aveiro coastal lagoon (Portugal). Water Air Soil Pollut. 222 (2011), 1–15.
3. Bagnato, E., Aiuppa, A., Parello, F., Calabrese, S., D'Alessandro, W., Mather, T.A., McGonigle, A.J.S., Pyle, D.M., Wängberg, I., Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos. Environ. 41:35 (2007), 7377–7388.
4. Bagnato, E, Aiuppa, A, Parello, F, D'Alessandro, W, Allard, P, Calabrese, S, Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles). J. Volcanol. Geotherm. Res. 179 (2009), 96–106, 10.1016/j.jvolgeores.2008.10.005.
5. Bagnato, E., Barra, M., Cardellini, C., Chiodini, G., Parello, F., Sprovieri, M., First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): mapping and quantification of gas release. J. Volcanol. Geotherm. Res. 289 (2014), 26–40.
6. Ball, J.W., McCleskey, R.B., Nordstrom, D.K., Holloway, J.M., Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2003–2005, U.S. Geological Survey Open-File Report, 2006–1339, 2008, 137.
7. Barringer, J.L., Szabó, Z.A., Reilly, P.A., Occurrence and mobility of mercury in groundwater: chapter 5. Bradley, P.M., (eds.) Current Perspectives in Contaminant Hydrology and Water Resources Sustainability, 2013, InTech, 117–149.
8. Barrow, N.J., Cox, V.C., The effects of pH and chloride concentration on mercury sorption. II. By a soil. Eur. J. Soil Sci. 43:2 (1992), 305–312.
9. Barrow, N.J., Cox, V.C., The effects of pH and chloride concentration on mercury sorption. I. By goethite. Eur. J. Soil Sci. 43:2 (1992), 295–304.
10. Beldowski, J., Pempkowiak, J., Mercury concentration and solid phase speciation changes in the course of early diagenesis in marine coastal sediments (Southern Baltic Sea). Mar. Freshw. Res. 60 (2009), 745–757.
11. Bollen, A., Wenke, A., Biester, H., Mercury speciation analyses in HgCl2-contaminated soils and groundwater – implications for risk assessment and remediation strategies. Water Res. 42:1–2 (2008), 91–100.
12. Boszke, L., Głosińska, G., Siepak, J., Some aspects of speciation of mercury in a water environment. Pol. J. Environ. Stud. 11:4 (2002), 285–298.
13. Brosset, C., The behavior of mercury in the physical environment. Water Air Soil Pollut. 34 (1987), 145–166.
14. Cabrita, M.T., Duarte, B., Cesário, R., Mendes, R., Hintelmann, H., Eckey, K., Dimock, B., Caçador, I., Canário, J., Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: uptake, transport, and toxicity and tolerance mechanisms. Sci. Total Environ. 650 (2019), 111–120.
15. Canário, J., Caetano, M., Vale, C., Cesario, R., Evidence for elevated production of methylmercury in salt marshes. Environ. Sci. Technol. 41 (2007), 7376–7382.
16. Canário, J., Vale, C., Poissant, L., Nogueira, M., Pilote, M., Branco, V., Mercury in sediments and vegetation in a moderate contaminated salt-marsh (Tagus Estuary, Portugal). J. Environ. Sci. 22:8 (2010), 1151–1157.
17. Castro, R., Pereira, S., Lima, A., Corticeiro, S., Válega, M., Pereira, E., Duarte, A., Figueira, E., Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76:10 (2009), 1348–1355.
18. Chattopadhyay, S., Fimmen, R.L., Yates, B.J., Lal, V., Randall, P., Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). Int. J. Phytorem. 14 (2012), 142–161.
19. Cinnirella, S., Pirrone, N., Spatial and temporal distributions of mercury emissions from forest fires in Mediterranean region and Russian Federation. Atmos. Environ. 40 (2006), 7346–7361.
20. Cui, L., Feng, X., Lin, C.J., Wang, X., Meng, B., Wang, X., Wang, H., Accumulation and translocation of 198Hg in four crop species. Environ. Toxicol. Chem. 33:2 (2014), 334–340.
21. Dimitrov, L., Mud volcanoes as the most important pathways for degassing deeply buried sediments. Earth Sci. Rev. 59 (2002), 49–76.
22. Dimitrov, L., Mud volcanoes – a significant source of atmospheric methane. Geo-Mar. Lett. 23 (2003), 155–161.
23. Driessen, P., Deckers, J., Spaargaren, O., Nachtergaele, F., (eds.) Lecture Notes on the Major Soils of the Word, No. 94, 2001, Food and agricultural organization of the United Nations, Rome (334 pp).
24. Ebinghaus, R., Tripathi, R.M., Wallschläger, D., Lindberg, S.E., Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales. Ebinghaus, R., Turner, R.R., de Lacerda, L.D., Vasiliev, O., Salomons, W., (eds.) Mercury Contaminated Sites, 1999, Springer, Berlin, Heidelberg, 3–50.
25. Ericksen, J.A., Gustin, M.S., Foliar exchange of mercury as a function of soil and air mercury concentrations. Sci. Total Environ. 324:1–3 (2004), 271–279.
26. Ericksen, J.A., Gustina, M.S., Schorranb, D.E., Johnsona, D.W., Lindbergc, S.E., Coleman, J.S., Accumulation of atmospheric mercury in forest foliage. Atmos. Environ. 37:12 (2003), 1613–1622.
27. Etiope, G., Natural emission of methane from geological seepage in Europe. Atmos. Environ. 43 (2009), 1430–1443.
28. Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci. Total Environ. 259 (2000), 115–121.
29. Friedli, H.R., Radke, L.F., Lu, J.Y., Banic, C.M., Leaitch, W.R., MacPherson, J.I., Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos. Environ. 37 (2003), 253–267.
30. Gagnon, Ch., Pelletier, É., Mucci, A., Behaviour of anthropogenic mercury in coastal marine sediments. Mar. Chem. 59:1–2 (1997), 159–176.
31. Gobeil, C., Cossa, D., Mercury in sediments and sediment pore water in Laurentian Trough. Can. J. Fish. Aquat. Sci., 50, 1993, 1794.
32. Gray, J.E., Theodorakos, P.M., Bailey, E.A., Turner, R.R., Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Sci. Total Environ., 260, 2000, 21.
33. Guo, Y., Yu, X., Characterizing the surface charge of clay minerals with atomic force microscope (AFM). AIMS Mater. Sci. 4:3 (2017), 582–593.
34. Gustin, M.S., Are mercury emissions from geologic sources significant? A status report. Sci. Total Environ. 304 (2003), 153–167.
35. Gustin, M.S., Lindberg, S., Marsik, F., Casimir, A., Ebinghaus, R., Edwards, G., Hubble-Fitzgerald, C., Kemp, R., Kock, H., Leonard, T., London, J., Majewski, M., Montecinos, C., Owens, J., Pilote, M., Poissant, L., Rasmussen, P., Schaedlich, F., Schneeberger, D., Schroeder, W., Sommar, J., Turner, R., Vette, A., Wallschläger, D., Xiao, Z., Zhang, H., Nevada STORMS project: measurement of mercury emissions from naturally enriched surfaces. J. Geophys. Res. 104:Dl7 (1999), 21831–21844.
36. Gustin, M.S., Lindberg, S.E., Austin, K., Coolbaugh, M., Vette, A., Zhang, H., Assessing the contribution of natural sources to regional atmospheric mercury budgets. Sci. Total Environ. 259 (2000), 61–72.
37. Gustin, M.S., Ericksen, J.A., Schorran, D.E., Johnson, D.W., Lindberg, S.E., Coleman, J.S., Application of controlled mesocosm for understanding mercury plant-soil-air exchange. Environ. Sci. Technol. 38 (2004), 6044–6050.
38. Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., Wrzosek-Jakubowska, J., Mercury in marine and oceanic waters – a review. Water Air Soil Pollut., 227(10), 2016, 371.
39. Hedgecock, I.M., Pirrone, N., Trunfio, G.A., Sprovieri, F., Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. J. Geophys. Res., 111(D20), 2006, 302.
40. Hein, J.R., Normark, W.R., McIntyre, B.R., Lorenson, T.D., Powell, C.L. II, Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California. Geology 34 (2006), 109–112.
41. Herbin, J.P., Saint-Germès, M., Maslakov, N., Shnyukov, E.F., Vially, R., Oil seeps from the “Boulganack” mud volcano in the Kerch Peninsula (Ukraine – Crimea), study of the mud and the gas: inferences for the petroleum potential. Oil Gas Sci. Technol. 63:5 (2008), 609–628.
42. Higueras, P., Oyarzun, R., Kotnik, J., Esbri, J.M., Martinez-Colorado, A., Horvat, M., López-Berdonces, M.A., Vaselli, O., Nisi, B., Mashyanov, N., Ryzov, V., Spiric, Z., Panichev, N., McCrindle, R., Feng, X., Fu, X., Lillo, J., Loredo, J., García, M.E., Alfonso, P., Villegas, K., Palacios, S., Oyarzún, J., Maturana, H., Contreras, F., Adams, M., Ribeiro-Guevara, S., Niecenski, L.F., Giammanco, S., Huremović, J., A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts. Environ. Geochem. Health 36 (2014), 713–734.
43. ISO 12846, Water quality. Determination of mercury. Method using atomic absorption spectrometry (AAS) with and without enrichment. ISO Standards Authority, 2012, 1–28.
44. ISO 33320, Particle size analysis – laser diffraction methods. ISO Standards Authority, 2009, 1–51.
45. Jing, Y.D., He, Z.L., Yang, X.E., Effects of pH, organic acids, and competitive cation on mercury desorption in soils. Chemosphere 69 (2007), 1662–1669.
46. Karandashev, V.K., Leikin, A.Y., Khvostikov, V.A., Kutseva, N.K., Pirogova, S.V., Water analysis by inductively coupled plasma mass spectrometry. Inorg. Mater. 52:14 (2016), 1391–1404.
47. Karasik, M.A., Morozov, V.I., Distribution of mercury in the products of mud volcanism in the Kerch-Taman Province. Geochemistry 3:3 (1966), 668–678.
48. Kikvadze, O.E., Lavrushin, V.Y., Pokrovskii, B.G., Polyak, B.G., Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol. Miner. Resour. 49 (2014), 491–504.
49. Kikvadze, O.E., Lavrushin, V.Yu., Polyak, B.G., Chemical geothermometry: application to mud volcanic waters of the Caucasus region. Front. Earth Sci., 2020, 10.1007/s11707-019-0810-8.
50. King, S.A., Behnke, S., Slack, K., Krabbenhoft, D.P., Nordstrom, D.K., Burr, M.D., Striegl, R.G., Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA. Appl. Geochem. 21 (2006), 1868–1879.
51. Kinniburgh, D.G., Jackson, M.L., Adsorption of mercury (II) by iron hydrous oxide gel. Soil Sci. Soc. Am. J. 42 (1978), 45–47.
52. Kokh, S.N., Shnyukov, Y.F., Sokol, E.V., Novikova, S.A., Kozmenko, O.A., Semenova, D.V., Rybak, E.N., Heavy carbon travertine related to methane generation: a case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment. Geol. 325 (2015), 26–40.
53. Kokh, S.N., Dekterev, A., Sokol, E.V., Potapov, S.S., Numerical simulation of an oil-gas fire: a case study of a technological accident at Tengiz oilfield, Kazakhstan. Energy Explor. Exploit. 34:1 (2016), 77–98.
54. Kokh, S.N., Sokol, E.V., Dekterev, A.A., Kokh, K.A., Rashidov, T.M., Tomilenko, A.A., Bul'bak, T.A., Khasaeva, A., Guseinov, A., The 2011 strong fire eruption of Shikhzarli mud volcano, Azerbaijan: a case study with implications for methane flux estimation. Environ. Earth Sci., 76, 2017, 701.
55. Kongchum, M., Hudnall, W.H., Delaune, R.D., Relationship between sediment clay minerals and total mercury. J. Environ. Sci. Health A 46:5 (2011), 534–539.
56. Kopf, A., Significance of mud volcanism. Rev. Geophys. 40 (2002), 1–52.
57. Kopf, A., Deyhle, A., Lavrushin, V.Yu., Polyak, B.G., Gieskes, J.M., Buachidze, G.I., Wallmann, K., Eisenhauer, A., Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. Int. J. Earth Sci. 92 (2003), 407–425.
58. Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A., Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., McGoldrick, P.J., Calver, C.R., Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 389 (2014), 209–220.
59. Lavrushin, V.Yu, Subsurface Fluids of the Greater Caucasus and Its Surroundings. 2012, GEOS, Moscow (348 pp. (in Russian)).
60. Lavrushin, V.Yu., Kopf, A., Deyhle, A., Stepanets, M.I., Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): evidence from boron isotopes. Lithol. Miner. Resour. 38 (2003), 120–153.
61. Lavrushin, V.Yu., Dubinina, E.O., Avdeenko, A.S., Isotopic composition of oxygen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia). Lithol. Miner. Resour. 40:2 (2005), 123–137.
62. Lavrushin, V.Y., Kikvadze, O.E., Pokrovsky, B.G., Polyak, B.G., Guliev, I.S., Aliev, A.A., Waters from mud volcanoes of Azerbaijan: isotopic-geochemical properties and generation environments. Lithol. Miner. Resour. 50 (2015), 1–25.
63. Limbong, D., Kumampung, J., Rimper, J., Arai, T., Miyazaki, N., Emissions and environmental implications of mercury from artisanal gold mining in north Sulawesi, Indonesia. Sci. Total Environ. 302 (2003), 227–236.
64. Lindberg, S.E., Meyers, T.P., Development of an automated micrometeorological method for measuring the emission of mercury vapor from wetland vegetation. Wetl. Ecol. Manag. 9 (2001), 333–347.
65. Lindberg, S.E., Hanson, P.J., Meyers, T.P., Kim, K.-H., Air/surface exchange of mercury vapor over forests—the need for a reassessment of continental biogenic emissions. Atmos. Environ. 32:5 (1998), 895–908.
66. Lozano-Rodriguez, E, Hérnandez, L, Bonay, P, Carpena-Rui, R, Distribution of cadmium in root tissues of maize and pea plants: physiological disturbances. J. Exp. Bot. 306 (1997), 123–128.
67. Luoma, S.N., Davis, J.A., Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12 (1983), 159–181.
68. Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Enamorado-Montes, G., Díez, S., Mercury uptake and effects on growth in Jatropha curcas. J. Environ. Sci. 48 (2016), 120–125.
69. Mason, R.P., Mercury emissions from natural processes and their importance in the global mercury cycle: chapter 7. Mercury Fate and Transport in the Global Atmosphere, 2009, Springer, New York, USA, 173–191.
70. Mazzini, A., Etiope, G., Mud volcanism: an updated review. Earth Sci. Rev. 168 (2017), 81–112.
71. Mieiro, C.L., Pato, P., Pereira, E., Mirante, F., Coutinho, J.A., Pinheiro, L.M., Magalhães, V.H., Duarte, A.C., Total mercury in sediments from mud volcanoes in Gulf of Cadiz. Mar. Pollut. Bull. 54:9 (2007), 1539–1544.
72. Milkov, A., Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167 (2000), 29–42.
73. Milkov, A.V., Sassen, R., Apanasovich, T.V., Dadashev, F.G., Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett., 30, 2003, 1037.
74. National Research Council, Toxicological Effects of Methylmercury. 2000, The National Academies Press, Washington, DC, 344.
75. Nriagu, J.O., A global assessment of natural sources of atmospheric trace metals. Nature 338 (1989), 47–49.
76. Nriagu, J., Becker, Ch., Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci. Total Environ. 304 (2003), 3–12.
77. Olenchenko, V.V., Shnyukov, Ye.F., Gas'kova, O.L., Kokh, S.N., Sokol, E.V., Bortnikova, S.B., El'tsov, I.N., Explosion dynamics of the Andrusov mud vent (Bulganak mud volcano area, Kerch Peninsula, Russia). Dokl. Earth Sci. 464:1 (2015), 951–955.
78. Oppo, D., Capozzi, R., Nigarov, A., Esenov, P., Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan. Mar. Pet. Geol. 57 (2014), 122–134.
79. Ovsyuchenko, A.N., Korzhenkov, A.M., Larkov, A.S., Marahanov, A.V., Rogozhin, E.A., Estimation of the seismic hazard of low-active areas by the example of the Kerch-Taman region. Sci. Tech. Develop. 96:1 (2017), 15–28 (in Russian).
80. Oyarzun, R., Lillo, J., Sánchez-Hernández, J.C., Higueras, P., Pre-industrial metal anomalies in ice cores: a simplified reassessment of windborne soil dust contribution and volcanic activity during the last glaciation. Int. Geol. Rev. 47 (2005), 1120–1130.
81. Pacyna, E., Pacyna, J., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P., Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 4 (2010), 2487–2499.
82. Pasynkov, A.A., Vakhrushev, B.A., Kovrigin, A.I., Vishnevetsky, M.A., Mud volcanism in the Kerch Peninsula. Geologiya i Poleznye Iskopaemye Mirovogo Okeana 1 (2016), 93–99 (in Russian).
83. Pellegrini, E., Petranich, E., Acquavita, A., Canário, J., Emili, A., Covelli, S., Mercury uptake by halophytes in response to a long-term contamination in coastal wetland salt marshes (northern Adriatic Sea). Environ. Geochem. Health 39 (2017), 1273–1289.
84. Pirrone, N., Costa, P., Pacyna, J.M., Ferrara, R., Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmos. Environ. 35 (2001), 2997–3006.
85. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G., Streets, D.G., Telmer, K., Global mercury emissions to the atmosphere from natural and anthropogenic sources: chapter 1. Mercury Fate and Transport in the Global Atmosphere, 2009, Springer, New York, USA, 3–49.
86. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaqner, J., Nason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10 (2010), 5951–5964.
87. Pyle, D.M., Mather, T.A., The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos. Environ. 3 (2003), 5115–5124.
88. Quantitative Analysis of Water, Working document M 01-51. Measuring Hg concentration in samples of natural, potable, mineral, and waste waters by Zeeman atomic-absorption spectroscopy with correction for nonselective background absorption on a RA-915M mercury vapor analyzer. PND F 14.1:2 (2012), 4.271–2012 (in Russian).
89. RA 915M, https://www.ohiolumex.com/mercury-vapor-analyzer-915m.
90. Rahn, W.R., The Role of Spartina alternijlora in the Transfer of Mercury in a Salt Marsh Environment. Master of Science Thesis, 1973, Georgia Institute of Technology.
91. Reimers, R.S., Krenkel, P.A., Kinetics of mercury adsorption and desorption in sediments. J. Water Pollut. Control Fed. 46:2 (1974), 352–365.
92. Rundgren, S., Rühling, Å., Schlüter, K., Tyler, G., Mercury in Soil – Distribution, Speciation and Biological Effects. 1992, Nordic Council of Ministers, Copenhagen.
93. Seal, R.R. II, Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 61 (2006), 633–677.
94. Shnyukov, E., Yanko-Hombach, V., Mud Volcanoes of the Black Sea Region and Their Environmental Significance. 2020, Springer, Cham (392 pp).
95. Shnyukov, E., Sheremetiev, V., Maslakov, N., Kutniy, V., Gusakov, I., Trofimov, V., Mud Volcanoes of the Kerch–Taman Region. 2005, GlavMedia Publishing House, Krasnodar (in Russian).
96. Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., Stroganov, A., Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process. Technol. 85 (2004), 473–485.
97. Shuvaeva, O.V., Gustaytis, M.A., Anoshin, G.N., Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta 621 (2008), 148–154.
98. Skyllberg, U., Chemical speciation of mercury in soil and sediment: chapter 7. Liu, G., Cai, Y., O'Driscoll, N., (eds.) Environmental Chemistry and Toxicology of Mercury, 2011, 219–258.
99. Slemr, F., Brunke, E.G., Ebinghaus, R., Temme, C., Munthe, J., Wängberg, I., Schroeder, W., Steffen, A., Berg, T., Worldwide trend of atmospheric mercury since 1977. Geophys. Res. Lett., 30, 2003, 1516.
100. Slemr, F., Brunke, E.G., Ebinghaus, R., Kuss, J., Worldwide trend of atmospheric mercury since 1995. Atmos. Chem. Phys. 11 (2011), 4779–4787.
101. Sokol, E., Kokh, S., Kozmenko, O., Novikova, S., Khvorov, P., Nigmatulina, E., Belogub, E., Kirillov, M., Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues (a case study from the Bulganak field, Northern Black Sea). Minerals, 8, 2018, 344.
102. Sokol, E.V., Kokh, S.N., Kozmenko, O.A., Lavrushin, V.Yu., Kikvadze, O.A., Mud volcanoes as important pathway for trace elements input to the environment: case study from the Kerch-Taman province, Northern Black Sea. 18th International Multidisciplinary Scientific GeoConference Proceeding, vol. 18, 2018, 307–322 (1.1).
103. Sokol, E.V., Kokh, S.N., Kozmenko, O.A., Lavrushin, V.Y., Belogub, E.V., Khvorov, P.V., Kikvadze, O.E., Boron in an onshore mud volcanic environment: case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem. Geol. 525 (2019), 58–81.
104. Sorochinskaya, A.V., Shakirov, R.B., Obzhirov, A.I., Geochemical and mineralogical specificity of mud volcanoes in Sakhalin Island. Vestnik DVO RAN 4 (2008), 58–65.
105. Sousa, A.I., Caҫador, I., Lillebø, A.I., Pardal, M.A., Heavy metal accumulation in Halimione portulacoides: intra -and extra-cellular metal binding sites. Chemosphere 70 (2008), 850–857.
106. Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H.D.M.J., Brito, J., Cairns, W., Barbante, C., Diéguez, M.D.C., Garcia, P.E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K.A., Neves, L.M., Gawlik, B.M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X.B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., Norstrom, C., Atmospheric mercury concentrations observed at groundbased monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 16 (2016), 11915–11935.
107. Stein, E.D., Cohen, Y., Winer, A.M., Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26:1 (1996), 1–43.
108. Sysalová, J., Kučera, J., Drtinová, B., Červenka, R., Zvěřina, O., Komárek, J., Kameník, J., Mercury species in formerly contaminated soils and released soil gases. Sci. Total Environ. 584 (2017), 1032–1039.
109. Ullrich, S.M., Tanton, T.W., Abdrashitowa, S.A., Mercury in the aquatic environment: a review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 31:3 (2001), 241–293.
110. Ustun Odabaşi, S., Şentürk, I., Maryam, B., Akbal, F., Bakan, G., Büyükgüngör, H., Temporal variation of mercury in Turkish Black Sea waters and associated risk assessment. Global NEST J 20:2 (2018), 345–354.
111. Válega, M., Lima, A.I.G., Figueira, E.M.A.P., Pereira, E., Pardal, M.A., Duarte, A.C., Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74 (2009), 530–536.
112. Ved, I.P., (eds.) The Climate of Crimea, 2000, An Atlas. Tavria-Plus, Simferopol (120 pp. (in Russian)).
113. Veiga, M.M., Maxson, P.A., Hylander, L.D., Origin and consumption of mercury in small-scale gold mining. J. Clean. Prod. 14 (2006), 436–447.
114. Wiedinmyer, C., Friedli, H., Mercury emission estimates from fires: an initial inventory for the United States. Environ. Sci. Technol. 41 (2007), 8092–8098.
115. Witt, M.L.I., Fischer, T.P., Pyle, D.M., Yang, T.F., Zellmer, G.F., Fumarole compositions and mercury emissions from the Tatun volcanic field, Taiwan: results from multi-component gas analyser, portable mercury spectrometer and direct sampling techniques. J. Volcanol. Geotherm. Res. 178 (2008), 636–643.
116. You, C.F., Gieskes, J.M., Lee, T., Yui, T.F., Chen, H.W., Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl. Geochem. 19 (2004), 695–707.
117. Zaputlyaeva, A., Mazzini, A., Blumenberg, M., Scheeder, G., Kürschner, W., Kus, J., Jones, M.T., Frieling, J., Recent magmatism drives hydrocarbon generation in north-east Java, Indonesia. Sci. Rep., 10, 2020, 1786.
|