Инд. авторы: Avdontceva M.S., Zolotarev A.A., Krivovichev S.V., Krzhizhanovskaya M.G., Sokol E.V., Kokh S.N., Bocharov V.N., Rassomakhin M.A., Zolotarev A.A.
Заглавие: Fluorellestadite from burned coal dumps: crystal structure refinement, vibrational spectroscopy data and thermal behavior
Библ. ссылка: Avdontceva M.S., Zolotarev A.A., Krivovichev S.V., Krzhizhanovskaya M.G., Sokol E.V., Kokh S.N., Bocharov V.N., Rassomakhin M.A., Zolotarev A.A. Fluorellestadite from burned coal dumps: crystal structure refinement, vibrational spectroscopy data and thermal behavior // Mineralogy and Petrology. - 2021. - ISSN 0930-0708. - EISSN 1438-1168.
Внешние системы: DOI: 10.1007/s00710-021-00740-4; РИНЦ: 46754708; WoS: 000619447800002;
Реферат: eng: Nine different samples of fluorellestadite from Chelyabinsk, Kizel and Kuznetsk coal basins were studied by single-crystal X-ray diffraction analysis, thermal X-ray diffraction (25-800 degrees C), Infrared (IR) and Raman spectroscopy. Fluorellestadite is hexagonal, space group P6(3)/m, the unit-cell parameters for the nine samples studied vary within rather small ranges: a = 9.415(5) - 9.4808(7) angstrom, c = 6.906(2) - 6.938(8) angstrom, V = 530.3(4) - 538.41(9) angstrom(3). The mineral is isotypic with apatite, the structure is based upon isolated TO4 tetrahedra, where the T position is statistically occupied by Si4+ and S6+ with the ideal ratio Si:S equal to 1:1. The fluorine atoms are located in channels of the Ca-4[(S,Si)O-4](6) framework oriented parallel to the c axis. The thermal expansion of fluorellestadite is almost isotropic in the temperature range 25-800 degrees C (for ambient temperature: alpha(a) = 12.0 center dot 10(-6) degrees C-1, alpha(c) = 11.9 center dot 10(-6) degrees C-1; for 800 degrees C: alpha(a) = 18.2 center dot 10(-6) degrees C-1, alpha(c) = 18.6 center dot 10(-6) degrees C-1). A similar thermal behavior had been observed for fluorapatite. Despite the same structure motifs and close conditions of formation, the samples of fluorellestadite show different S/Si/P occupancies for T site and the F/Cl/OH (X-position) ratios.
Ключевые слова: Chelyabinsk coal basin; technogenic (anthropogenic) mineralogy; burned coal dumps; apatite supergroup; Fluorellestadite;
Издано: 2021
Цитирование: 1. Banno Y, Miyawaki R, Momma K, Bunno M (2016) A CO3-bearing member of the hydroxylapatite–hydroxylellestadite series from Tadano, Fukushima prefecture, Japan: CO3-SO4 substitution in the apatite–ellestadite series. Mineral Mag 80:363–370 DOI: 10.1180/minmag.2016.080.005 2. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197 DOI: 10.1107/S0108768190011041 3. Bruker-AXS. APEX2 (2014) Version 2014.11–0. Bruker-AXS, Madison 4. Bruker-AXS Topas V4.2 (2009) General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany 5. Chernorukov NG, Knyazev AV, Bulanov EN (2011) Phase transition and thermal expansion of apatite-structured compounds. Inorg Mater 47:172–177 DOI: 10.1134/S002016851101002X 6. Chesnokov BV (1994) New minerals from burnt dumps of the Chelyabinsk coal basin. Report 6. Ural’skiy Mineralogicheskiy Sbornik 3:3–34 [in Russian] 7. Chesnokov BV (1995) High-temperature chlorsilicate mineralization in the burnt dumps of the Chelyabinsk coal basin. Dokl Akad Nauk 343(1):94–95 [in Russian] 8. Chesnokov BV (1997) New minerals from burnt dumps of the Chelyabinsk coal basin. Report 10: review of results over 1982–1996. Ural’skiy Mineralogicheskiy Sbornik 7:5–32 [in Russian] 9. Chesnokov BV (1999) Experience in technogenic mineralogy: 15 years on burnt dumps of underground and open-cast coal mines and concentrating plants of the south Urals. Ural’skiy Mineralogicheskiy Sbornik 9:138–167 [in Russian] 10. Chesnokov B. V, Bazhenova L. F, Bushmakin A. F (1987с) Fluorellestadite Ca10[(SO4),(SiO4)]6F2 – a new mineral. Zap Vses Miner Obshchest 116: 743–746 [in Russian] 11. Chesnokov B. V, Shcherbakova E. P (1991) Mineralogy of Burnt Dumps of the Chelyabinsk Coal Basin (An Experience in Technogenic Mineralogy) [in Russian]. Nauka, Moscow 12. Chesnokov BV, Shcherbakova EP, Nishanbaev TP (2008) Minerals of burnt dumps of the Chelyabinsk coal basin. Ural branch of RAS, Miass [in Russian] 13. Chukanov N. V (2014) Infrared spectra of mineral species. Volume 1. Springer Dordrecht Heidelberg New York London 14. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann J (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crys 42:339–341 DOI: 10.1107/S0021889808042726 15. Eytier C, Eytier JR, Favreau G, Devouard B, Vigier J (2004) Minéraux de Pyrométamorphisme de Lapanouse-de Sévérac (Aveyron). Cahier des Micromonteurs 85(3):3–58 16. Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Ye V, Dulski M, Murashko M, Dzierzanowski P, Sharygin VV, Krivovichev SV, Wirth R (2015b) Mayenite supergroup, part III: Fluormayenite, Ca12Al14O32[□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals of mayenite supergroup from pyrometamorphic rock of Hatrurim complex, south Levant. Eur J Mineral 27(1):123–136 DOI: 10.1127/ejm/2015/0027-2420 17. Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Vapnik Y, Murashko M, Wlodyka R, Dzierżanowski P (2015a) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian autonomy, Israel. Mineral Mag 79:1061–1072 DOI: 10.1180/minmag.2015.079.5.03 18. Galuskina IO, Krüger B, Galuskin EV, Armbruster T, Gazeev VM, Włodyka R, Dulski M, Dzierżanowski P (2015) Fluorchegemite, Ca7(SiO4)3F2, a new mineral from the edgrewitebearing endoskarn zone of an altered xenolith in ignimbrites from upper Chegem caldera, northern Caucasus, Kabardina-balkaria, Russia; occurrence, crystal structure, and new data on the mineral assemblages. Can Mineral 53:325–344 DOI: 10.3749/canmin.1400084 19. Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian autonomy, Israel. Am Mineral 99:965–975 DOI: 10.2138/am.2014.4563 20. Harada K, Nagashima K, Kato A (1971) Hydroxyellestadite, a new apatite from Chichibu mine, Saitama prefecture, Japan. Am Mineral 56:1507–1518 21. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Rev Mineral Geochem 48:1–12 DOI: 10.2138/rmg.2002.48.1 22. Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Kozmenko OA, Goryainov SV, Clark ID (2016) Intermediate members of the lime-monteponite solid solutions (Ca1–xCdxO, x = 0.36–0.55): discovery in natural occurrence. Am Mineral 101:146–161 DOI: 10.2138/am-2016-5361 23. Kokh SN, Sokol EV, Sharigin VV (2015) Ellestadite-group minerals in combustion metamorphic rock. Coal Peat Fires: A Global Perspect 3:543–562 24. Langreiter T, Kahlenberg V (2015) TEV – a program for the thermal expansion tensor from diffraction data. Crystals 5:143–153 DOI: 10.3390/cryst5010143 25. Livingstone A, Ryback G, Fejer EE, Stanley CJ (1987) Mattheddleite, a new mineral of the apatite group from Leadhills, Strathclyde region, Scottish. J Geol 23:1–8 26. McConnell D (1937) The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end-member. Am Mineral 22:977–986 27. Onac B, Effenberger H, Ettinger K, Panzaru S (2006) Hydroxyellestadite from Cioclavina cave (Romania): microanalytical, structural and vibrational spectroscopy data. Am Mineral 91:1927–1931 DOI: 10.2138/am.2006.2143 28. Pajares I, De la Torre A, Martinez-Ramirez S, Puertas F, Blanco-Varela M, Aranda M (2002) Quantitative analysis of mineralized white Portland clinkers: the structure of Fluorellestadite. Powder Diffract 17:281–289 DOI: 10.1154/1.1505045 29. Parafiniuk J, Hatert F (2020) New IMA CNMNC guidelines on combustion products from burning coal dumps. Eur J Mineral 32:215–217 DOI: 10.5194/ejm-32-215-2020 30. Pasero M, Kampf A, Ferraris C, Pekov I, Rakovan J, White T (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179 DOI: 10.1127/0935-1221/2010/0022-2022 31. Rouse RC, Dunn PJ (1982) A contribution to the crystal chemistry of ellestadite and silicate sulfate apatites. Am Mineral 67:90–96 32. Sejkora J, Houzar S, Srein V (1999) Clorem bohaty hydroxyellestadit ze Zastavky u Brno. Acta Musei Moraviae, Scientiae Geologicae 84:49–59 33. Sharygin VV, Sokol EV, Belakovskiy D (2015) Mineralogy and origin of fayalite–sekaninaite paralava: Ravat coal fire, Central Tajikistan coal and peat fires: a global perspective. Elsevier, Netherlands, pp 581–607 34. Sheldrick GM (2007) SADABS. University of Gӧettingen, Gӧettingen 35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8 36. Środek D, Galuskina I, Dulski M, Ksiąźek M, Kusz J, Gazeev V (2018) Chlorellestadite Ca5(SiO4)1.5(SO4)1.5Cl, a new ellestadite group mineral from the Shadil-Khokh volcano, South Ossetia. Mineral Petrol 112:743–752 DOI: 10.1007/s00710-018-0571-1 37. Sokol EV, Nigmatulina EN, Volkova NI (2002) Fluorine mineralization from burning coal spoil-heaps in the Russian Urals. Mineral Petrol 75:23–40 DOI: 10.1007/s007100200013 38. Sokol EV, Nigmatulina EN, Maksimova NV, Chiglintsev AJ (2005) CaC2O4*H2O spherulites in human kidney stones: morphology, chemical composition and growth regime. Eur J Mineral 17:285–295 DOI: 10.1127/0935-1221/2005/0017-0285 39. Sokol EV, Kokh SN, Ye V, Thiéry V, Korzhova SA (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. Am Mineral 99:1471–1487 DOI: 10.2138/am.2014.4704 40. Sokol EV, Kokh SN, Sharygin VV, Danilovsky VA, Seryotkin YV, Liferovich R, Deviatiiarova AS, Nigmatulina EN, Karmanov NS (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: implications for storage and partitioning of elements in oil shale clinkering. Minerals 9(8):465 DOI: 10.3390/min9080465 41. Zateeva SN, Sokol EV, Sharygin VV (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geol Ore Deposit 49:130–143 DOI: 10.1134/S1075701507080132 42. Zolotarev AA, Krivovichev SV, Panikorovskii TL, Gurzhiy VV, Bocharov VN, Rassomakhin MA (2019) Dmisteinbergite, CaAl2Si2O8, a metastable polymorph of anorthite: crystal-structure and Raman spectroscopic study of the holotype specimen. Minerals 9:570 DOI: 10.3390/min9100570 43. Zolotarev A. A, Zhitova E. S, Krzhizhanovskaya M. G, Rassomakhin M. A, Shilovskikh V. V, Krivovichev S. V (2019b) Crystal chemistry and high-temperature behaviour of ammonium phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin. Minerals 9:486