Инд. авторы: Belyanchikov M.A., Savinov M., Bedran Z.V., Bednyakov P., Proschek P., Prokleska J., Abalmasov V.A., Petzelt J., Zhukova E.S., Thomas V.G., Dudka A., Zhugayevych A., Prokhorov A.S., Anzin V.B., Kremer R.K., Fischer J.K.H., Lunkenheimer P., Loidl A., Uykur E., Dressel M., Gorshunov B.
Заглавие: Dielectric ordering of water molecules arranged in a dipolar lattice
Библ. ссылка: Belyanchikov M.A., Savinov M., Bedran Z.V., Bednyakov P., Proschek P., Prokleska J., Abalmasov V.A., Petzelt J., Zhukova E.S., Thomas V.G., Dudka A., Zhugayevych A., Prokhorov A.S., Anzin V.B., Kremer R.K., Fischer J.K.H., Lunkenheimer P., Loidl A., Uykur E., Dressel M., Gorshunov B. Dielectric ordering of water molecules arranged in a dipolar lattice // Nature Communications. - 2020. - Vol.11. - Iss. 1. - Art.3927. - ISSN 2041-1723.
Внешние системы: DOI: 10.1038/s41467-020-17832-y; РИНЦ: 45382532; PubMed: 32764722; WoS: 000561122000004;
Реферат: eng: Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of similar to 5 angstrom with an interchannel separation of similar to 10 angstrom prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T-0 approximate to 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.
Ключевые слова: CORDIERITE; RELAXATION; NANOTUBES; TRANSITION; H2O MOLECULES; HYDRATION SHELLS; FERROELECTRIC ICE; SQUARE ICE; DYNAMICS; DIFFUSION;
Издано: 2020
Физ. характеристика: 3927
Цитирование: 1. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935). 2. Bramwell, S. T. Ferroelectric ice. Nature 397, 212–213 (1999). 3. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford University Press, 2002). 4. Köster, K. W. et al. Dynamics enhanced by HCl doping triggers 60% Pauling entropy release at the ice XII–XIV transition. Nat. Commun. 6, 7349 (2015). 5. Laage, D., Elsaesser, T. & Hynes, J. T. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117, 10694–10725 (2017). 6. Bellissent-Funel, M.-C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016). 7. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008). 8. Fogarty, A. C. & Laage, D. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation. J. Phys. Chem. B 118, 7715–7729 (2014). 9. Su, X., Lianos, L., Shen, Y. R. & Somorjai, G. A. Surface-Induced Ferroelectric Ice on Pt(111). Phys. Rev. Lett. 80, 1533–1536 (1998). 10. Iedema, M. J. et al. Ferroelectricity in Water Ice. J. Phys. Chem. B 102, 9203–9214 (1998). 11. Spagnoli, C., Loos, K., Ulman, A. & Cowman, M. K. Imaging structured water and bound polysaccharide on mica surface at ambient temperature. J. Am. Chem. Soc. 125, 7124–7128 (2003). 12. Zhang, C., Gygi, F. & Galli, G. Strongly anisotropic dielectric relaxation of water at the nanoscale. J. Phys. Chem. Lett. 4, 2477–2481 (2013). 13. Kanth, J. M. P., Vemparala, S. & Anishetty, R. Long-distance correlations in molecular orientations of liquid water and shape-dependent hydrophobic force. Phys. Rev. E 81, 21201 (2010). 14. Neek-Amal, M., Peeters, F. M., Grigorieva, I. V. & Geim, A. K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10, 3685–3692 (2016). 15. Sobrino Fernández, M., Peeters, F. M. & Neek-Amal, M. Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 45436 (2016). 16. Jiao, S., Duan, C. & Xu, Z. Structures and thermodynamics of water encapsulated by graphene. Sci. Rep. 7, 2646 (2017). 17. Cicero, G., Grossman, J. C., Schwegler, E., Gygi, F. & Galli, G. Water confined in nanotubes and between graphene sheets: a first principle study. J. Am. Chem. Soc. 130, 1871–1878 (2008). 18. Garberoglio, G. Collective properties of water confined in carbon nanotubes: a computer simulation study. Eur. Phys. J. E 31, 73–80 (2010). 19. Reiter, G. F. et al. Evidence for an anomalous quantum state of protons in nanoconfined water. Phys. Rev. B 85, 45403 (2012). 20. Kolesnikov, A. I. et al. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93, 35503 (2004). 21. Nakamura, Y. & Ohno, T. Ferroelectric mobile water. Phys. Chem. Chem. Phys. 13, 1064–1069 (2011). 22. Luo, C., Fa, W., Zhou, J., Dong, J. & Zeng, X. C. Ferroelectric ordering in ice nanotubes confined in carbon nanotubes. Nano Lett. 8, 2607–2612 (2008). 23. Köfinger, J., Hummer, G. & Dellago, C. Macroscopically ordered water in nanopores. Proc. Natl Acad. Sci. 105, 13218 LP–13213222 (2008). 24. Kurotobi, K. & Murata, Y. A single molecule of water encapsulated in fullerene C60. Sci. (80-.). 333, 613 LP–613616 (2011). 25. Beduz, C. et al. Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc. Natl Acad. Sci. U. S. A. 109, 12894–12898 (2012). 26. Aoyagi, S. et al. A cubic dipole lattice of water molecules trapped inside carbon cages. Chem. Commun. 50, 524–526 (2014). 27. LeBard, D. N. & Matyushov, D. V. Ferroelectric hydration shells around proteins: electrostatics of the protein−water interface. J. Phys. Chem. B 114, 9246–9258 (2010). 28. Caridad, J. M. et al. A graphene-edge ferroelectric molecular switch. Nano Lett. 18, 4675–4683 (2018). 29. Shim, J. et al. Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 12, 648–654 (2012). 30. Lee, D., Ahn, G. & Ryu, S. Two-dimensional water diffusion at a graphene–silica interface. J. Am. Chem. Soc. 136, 6634–6642 (2014). 31. Severin, N., Lange, P., Sokolov, I. M. & Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore. Nano Lett. 12, 774–779 (2012). 32. Olson, E. J. et al. Capacitive sensing of intercalated H2O molecules using graphene. ACS Appl. Mater. Interfaces 7, 25804–25812 (2015). 33. Wang, Y. & Xu, Z. Water intercalation for seamless, electrically insulating, and thermally transparent interfaces. ACS Appl. Mater. Interfaces 8, 1970–1976 (2016). 34. Zhao, H.-X. et al. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture. Proc. Natl Acad. Sci. 108, 3481–3486 (2011). 35. Maniwa, Y. et al. Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534–538 (2005). 36. Parkkinen, P., Riikonen, S. & Halonen, L. Ice XI: not that ferroelectric. J. Phys. Chem. C. 118, 26264–26275 (2014). 37. Zhao, W. H., Bai, J., Yuan, L. F., Yang, J. & Zeng, X. C. Ferroelectric hexagonal and rhombic monolayer ice phases. Chem. Sci. 5, 1757–1764 (2014). 38. Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015). 39. Zhou, W. et al. The observation of square ice in graphene questioned. Nature 528, E1–E2 (2015). 40. Algara-Siller, G., Lehtinen, O. & Kaiser, U. Algara-Siller et al. reply. Nature 528, E3–E3 (2015). 41. Wang, F. C., Wu, H. A. & Geim, A. K. Wang et al. reply. Nature 528, E3–E3 (2015). 42. Winkler, B. The dynamics of H2O in minerals. Phys. Chem. Miner. 23, 310–318 (1996). 43. Kolesov, B. A. & Geiger, C. A. Behavior of H2O molecules in the channels of natrolite and scolecite: a Raman and IR spectroscopic investigation of hydrous microporous silicates. Am. Miner. 91, 1039–1048 (2006). 44. Rowley, S. E. et al. Ferroelectric quantum criticality. Nat. Phys. 10, 367 (2014). 45. Rowley, S. E. et al. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19. Sci. Rep. 6, 25724 (2016). 46. Gorshunov, B. P. et al. Quantum behavior of water molecules confined to nanocavities in gemstones. J. Phys. Chem. Lett. 4, 2015–2020 (2013). 47. Gorshunov, B. P. et al. Incipient ferroelectricity of water molecules confined to nano-channels of beryl. Nat. Commun. 7, 12842 (2016). 48. Belyanchikov, M. A. et al. Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments. Phys. Chem. Chem. Phys. 19, 30740–30748 (2017). 49. Dressel, M., Zhukova, E. S., Thomas, V. G. & Gorshunov, B. P. Quantum electric dipole lattice: water molecules confined to nanocavities in beryl. J. Infrared, Millim., Terahertz Waves 39, 799–815 (2018). 50. Zhukova, E. S. et al. H2O molecules hosted by a crystalline matrix - New state of water? EPJ Web Conf. 195, 1–2 (2018). 51. Zhukova, E. S. et al. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice. J. Chem. Phys. 140, 0–11 (2014). 52. Kolesnikov, A. I. et al. Quantum tunneling of water in beryl: a new state of the water molecule. Phys. Rev. Lett. 116, 167802 (2016). 53. Gibbs, G. V. The polymorphism of cordierite I: the crystal structure of low cordierite. Am. Mineral. 51, 1068–1087 (1966). 54. Kolesov, B. A. & Geiger, C. A. Cordierite II: The role of CO2 and H2O. Am. Mineral. 85, 1265–1274 (2000). 55. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977). 56. Cowley, R. A., Gvasaliya, S. N., Lushnikov, S. G., Roessli, B. & Rotaru, G. M. Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011). 57. Elton, D. C. & Fernández-Serra, M.-V. Polar nanoregions in water: a study of the dielectric properties of TIP4P/2005, TIP4P/2005f and TTM3F. J. Chem. Phys. 140, 124504 (2014). 58. Martin, D. R. & Matyushov, D. V. Dipolar nanodomains in protein hydration shells. J. Phys. Chem. Lett. 6, 407–412 (2015). 59. Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987). 60. Samara, G. A. The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367–R411 (2003). 61. Blinc, R. & Žekš, B. Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland Pub. Co., 1974). 62. Hatta, I. Static electric susceptibility and dielectric relaxation time near the transition points in NaNO2. J. Phys. Soc. Jpn. 28, 1266–1277 (1970). 63. Starešinić, D., Biljaković, K., Lunkenheimer, P. & Loidl, A. Slowing down of the relaxational dynamics at the ferroelectric phase transition in one-dimensional (TMTTF)2AsF6. Solid State Commun. 137, 241–245 (2006). 64. Schiebl, M. et al. Order-disorder type critical behavior at the magnetoelectric phase transition in multiferroic DyMnO3. Phys. Rev. B 91, 224205 (2015). 65. Bovtun, V. et al. Broadband dielectric spectroscopy of phonons and polar nanoclusters in PbMg(1/3)Nb(2/3)O3-35%PbTiO3 ceramics: grain size effects. Phys. Rev. B 79, 104111 (2009). 66. Böhmer, R., Maglione, M., Lunkenheimer, P. & Loidl, A. Radio‐frequency dielectric measurements at temperatures from 10 to 450 K. J. Appl. Phys. 65, 901–904 (1989). 67. Lepezin, G. G. & Melenevsky, V. N. On the problem of water diffusion in the cordierites. LITHOS 10, 49–57 (1977). 68. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). 69. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). 70. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). 71. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 72. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 81101 (2010).