Инд. авторы: Bataleva Y.V., Kruk A.N., Novoselov I.D, Furman O.V., Palyanov Y.N.
Заглавие: Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling
Библ. ссылка: Bataleva Y.V., Kruk A.N., Novoselov I.D, Furman O.V., Palyanov Y.N. Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling // MINERALS. - 2020. - Vol.10. - Iss. 8. - Art.715.
Внешние системы: DOI: 10.3390/min10080715; РИНЦ: 45371014; РИНЦ: 45371014; WoS: 000564840300001;
Реферат: eng: An experimental study aimed at the modeling of dolomite- and ankerite-involving decarbonation reactions, resulting in the CO2 fluid release and crystallization of Ca, Mg, Fe garnets, was carried out at a wide range of pressures and temperatures of the upper mantle. Experiments were performed using a multi-anvil high-pressure apparatus of a "split-sphere" type, in CaMg(CO3)(2)-Al2O3-SiO2 and Ca(Mg,Fe)(CO3)(2)-Al2O3-SiO2 systems (pressures of 3.0, 6.3 and 7.5 GPa, temperature range of 950-1550 degrees C, hematite buffered high-pressure cell). It was experimentally shown that decarbonation in the dolomite-bearing system occurred at 1100 +/- 20 degrees C (3.0 GPa), 1320 +/- 20 degrees C (6.3 GPa), and 1450 +/- 20 degrees C (7.5 GPa). As demonstrated by mass spectrometry, the fluid composition was pure CO2. Composition of synthesized garnet was Prp(83)Grs(17), with main Raman spectroscopic modes at 368-369, 559-562, and 912-920 cm(-1). Decarbonation reactions in the ankerite-bearing system were realized at 1000 +/- 20 degrees C (3.0 GPa), 1250 +/- 20 degrees C (6.3 GPa), and 1400 +/- 20 degrees C (7.5 GPa). As a result, the garnet of Grs(25)Alm(40)Prp(35) composition with main Raman peaks at 349-350, 552, and 906-907 cm(-1) was crystallized. It has been experimentally shown that, in the Earth's mantle, dolomite and ankerite enter decarbonation reactions to form Ca, Mg, Fe garnet + CO2 assemblage at temperatures similar to 175-500 degrees C lower than CaCO3 does at constant pressures.
Ключевые слова: SYSTEM; CARBONATE; TRANSITION ZONE; KIMBERLITE PIPE; SIDERITE STABILITY; MINERAL INCLUSIONS; PHASE-RELATIONS; HIGH-PRESSURE; high-pressure experiment; experimental modeling; CO2 fluid; garnet; ankerite; dolomite; decarbonation reaction; DIAMOND FORMATION; MELTS;
Издано: 2020
Физ. характеристика: 715
Цитирование: 1. Evans, K.A. The redox budget of subduction zones. Earth Sci. Rev. 2012, 113, 11–32. [CrossRef] 2. Luth, R.W. Carbon and carbonates in mantle. In Mantle Petrology: Field Observation and High Pressure Experimentation: A Tribute to Francis, R. (Joe) Boyd; Fei, Y., Bertka, M.C., Mysen, B.O., Eds.; The Geochemical Society: Washington, DC, USA, 1999; pp. 297–316. ISBN 0-941809-05-6. 3. Stagno, V. Carbon, carbides, carbonates and carbonatitic melts in the Earth’s interior. J. Geol. Soc. 2019, 176, 375–387. [CrossRef] 4. Dasgupta, R.; Hirschmann, M.M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 2010, 298, 1–13. [CrossRef] 5. Jones, A.; Genge, M.; Carmody, L. Carbonate melts and carbonatites. Rev. Miner. Geochem. 2013, 75, 289–322. [CrossRef] 6. Shatskiy, A.F.; Litasov, K.D.; Palyanov, Y.N. Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: Review of experimental data. Russ. Geol. Geophys. 2015, 56, 113–142. [CrossRef] 7. Morlidge, M.; Pawley, A.; Droop, G. Double carbonate breakdown reactions at high pressures: An experimental study in the system CaO-MgO-FeO-MnO-CO2 . Contrib. Miner. Pet. 2006, 152, 365–373. [CrossRef] 8. Frezzotti, M.L.; Selverstone, J.; Sharp, Z.D.; Compagnoni, R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 2011, 4, 703–706. [CrossRef] 9. Kelemen, P.B.; Manning, C.E. Reevaluating carbon fluxes in subduction zones. Proc. Natl. Acad. Sci. USA 2015, 112, E3997–E4006. [CrossRef] 10. Gunn, S.C.; Luth, R.W. Carbonate reduction by Fe–S–O melts at high pressure and high temperature. Am. Miner. 2006, 91, 1110–1116. [CrossRef] 11. Palyanov, Y.N.; Borzdov, Y.M.; Bataleva, Y.V.; Sokol, A.G.; Palyanova, G.A.; Kupriyanov, I.N. Reducing role of sulfides and diamond formation in the Earth’s mantle. Earth Planet. Sci. Lett. 2007, 260, 242–256. [CrossRef] 12. Bataleva, Y.V.; Palyanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Bayukov, O.A. Wüstite stability in the presence of a CO2-fluid and a carbonate-silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents. Lithos 2016, 244, 20–29. [CrossRef] 13. Newton, R.C.; Sharp, W.E. Stability of forsterite + CO2 and its bearing on the role of CO2 in the mantle. Earth Planet. Sci. Lett. 1975, 26, 239–244. [CrossRef] 14. Koziol, A.M.; Newton, R.C. Experimental determination of the reaction: Magnesite + enstatite = forsterite + CO2 in the ranges 6–25 kbar and 700–1100C. Am. Min. 1998, 83, 213–219. [CrossRef] 15. Wyllie, P.J.; Huang, W.-L.; Otto, J.; Byrnes, A.P. Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophys. 1983, 100, 359–388. [CrossRef] 16. Pal’yanov, Y.N.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Miner. 2005, 17, 207–214. [CrossRef] 17. Luth, R.W. Experimental determination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa. Contrib. Miner. Pet. 1995, 122, 152–158. [CrossRef] 18. Wyllie, P.J. Magmas and volatile components. Am. Miner. 1979, 64, 469–500. 19. Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. Am. J. Sci. 1978, 278, 305–343. [CrossRef] 20. Knoche, R.; Sweeney, R.J.; Luth, R.W. Carbonation and decarbonation of eclogites: The role of garnet. Contrib. Miner. Pet. 1999, 135, 332–339. [CrossRef] 21. Pal’yanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Khokhryakov, A.F.; Sobolev, N.V. Diamond formation through carbonate-silicate interaction. Am. Miner. 2002, 87, 1009–1013. [CrossRef] 22. Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541. [CrossRef] 23. Gorman, P.J.; Kerrick, D.M.; Connolly, J.A.D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 2006, 7, Q04007. [CrossRef] 24. Molina, J.F.; Poli, S. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet. Sci. Lett. 2000, 176, 295–310. [CrossRef] 25. Poli, S.; Franzolin, E.; Fumagalli, P.; Crottini, A. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet. Sci. Lett. 2009, 278, 350–360. [CrossRef] 26. Bulanova, G.P. The formation of diamond. J. Geochem. Explor. 1995, 53, 2–23. [CrossRef] 27. Wang, A.; Pasteris, J.D.; Meyer, H.O.A.; DeleDuboi, M.L. Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet. Sci. Lett. 1996, 141, 293–306. [CrossRef] 28. Navon, O.; Hutcheon, I.D.; Rossman, G.R.; Wasserburg, G.J. Mantle-derived fluids in diamond micro-inclusions. Nature 1988, 335, 784–789. [CrossRef] 29. Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 1994, 58, 761–771. [CrossRef] 30. Sobolev, N.V.; Kaminsky, F.V.; Griffin, W.L.; Yefimova, E.S.; Win, T.T.; Ryan, C.G.; Botkunov, A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 1997, 39, 135–157. [CrossRef] 31. Izraeli, E.S.; Harris, J.W.; Navon, O. Brine inclusions in diamonds: A new upper mantle fluid. Earth Planet. Sci. Lett. 2001, 187, 1–10. [CrossRef] 32. Stachel, T.; Harris, J.W.; Brey, G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Miner. Pet. 1998, 132, 34–47. [CrossRef] 33. Brenker, F.E.; Vollmer, C.; Vincze, L.; Vekemans, B.; Szymanski, A.; Janssens, K.; Szaloki, I.; Nasdala, L.; Joswig, W.; Kaminsky, F. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 2007, 260, 1–9. [CrossRef] 34. Kaminsky, F.; Wirth, R.; Schreiber, B. Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Can. Miner. 2013, 51, 669–688. [CrossRef] 35. Bataleva, Y.V.; Novoselov, I.D.; Kruk, A.N.; Furman, O.V.; Reutsky, V.N.; Palyanov, Y.N. Experimental modeling of decarbonation reactions resulting in the formation of Mg, Fe-garnets and CO2-fluid under mantle P,T-parameters. Russ. Geol. Geophys. 2020, 61, 650–662. 36. Cerantola, V.; Bykova, E.; Kupenko, I.; Merlini, M.; Ismailova, L.; McCammon, C.; Bykov, M.; Chumakov, A.I.; Petitgirard, S.; Kantor, I.; et al. Stability of iron-bearing carbonates in the deep Earth’s interior. Nat. Commun. 2017, 8, 15960. [CrossRef] 37. Cerantola, V.; Wilke, M.; Kantor, I.; Ismailova, L.; Kupenko, I.; McCammon, C.; Pascarelli, S.; Dubrovinsky, L.S. Experimental investigation of FeCO3 (siderite) stability in Earth’s lower mantle using XANES spectroscopy. Am. Miner. 2019, 104, 1083–1091. [CrossRef] 38. Tao, R.; Fei, Y.; Zhang, L. Experimental determination of siderite stability at high pressure. Am. Min. 2013, 98, 1565–1572. [CrossRef] 39. Kang, N.; Schmidt, M.W.; Poli, S.; Franzolin, E.; Connolly, J.A.D. Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem. Geol. 2015, 400, 34–43. [CrossRef] 40. Liu, J.; Lin, J.-F.; Prakapenka, V.B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep. 2015, 5, 7640. [CrossRef] 41. Bayarjargal, L.; Fruhner, C.-J.; Schrodt, N.; Winkler, B. CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Phys. Earth Planet. Inter. 2018, 281, 31–45. [CrossRef] 42. Gavryushkin, P.N.; Martirosyan, N.S.; Inerbaev, T.M.; Popov, Z.I.; Rashchenko, S.V.; Likhacheva, A.Y.; Lobanov, S.S.; Goncharov, A.F.; Prakapenka, V.B.; Litasov, K.D. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3 . Cryst. Growth Des. 2017, 17, 6291–6296. [CrossRef] 43. Solopova, N.A.; Dubrovinsky, L.; Spivak, A.V.; Litvin, Y.A.; Dubrovinskaia, N. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys. Chem. Miner. 2015, 42, 73–81. [CrossRef] 44. Katsura, T.; Ito, E. Melting and subsolidus phase relations in the MgSiO3–MgCO3 system at high pressures: Implications to evolution of the Earth’s atmosphere. Earth Planet. Sci. Lett. 1990, 99, 110–117. [CrossRef] 45. Fiquet, G.; Guyot, F.; Kunz, M.; Matas, J.; Andrault, D.; Hanfland, M. Structural refinements of magnesite at very high pressure. Am. Miner. 2002, 87, 1261–1265. [CrossRef] 46. Suito, K.; Namba, J.; Horikawa, T.; Taniguchi, Y.; Sakurai, N.; Kobayashi, M.; Onodera, A.; Shimomura, O.; Kikegawa, T. Phase relations of CaCO3 at high pressure and high temperature. Am. Miner. 2001, 86, 997–1002. [CrossRef] 47. Li, Z.; Li, J.; Lange, R.; Liu, J.; Militzer, B. Determination of calcium carbonate and sodium carbonate melting curves up to Earth’s transition zone pressures with implications for the deep carbon cycle. Earth Planet. Sci. Lett. 2017, 457, 395–402. [CrossRef] 48. Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [CrossRef] 49. Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Sokol, A.G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10, 3169–3175. [CrossRef] 50. Palyanov, Y.N.; Sokol, A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112S, 690–700. [CrossRef] 51. Sokol, A.G.; Khokhryakov, A.F.; Palyanov, Y.N. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contrib. Miner. Pet. 2015, 170, 26. [CrossRef] 52. Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High-temperature calibration of a multi-anvil high pressure apparatus. High Press. Res. 2015, 35, 139–147. [CrossRef] 53. Bataleva, Y.V.; Palyanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Palyanova, G.A. Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation. Lithos 2012, 128, 113–125. [CrossRef] 54. Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle–slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408–20413. [CrossRef] [PubMed] 55. Bataleva, Y.V.; Palyanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Bayukov, O.A. The role of rocks saturated with metallic iron in the formation of ferric carbonate–silicate melts: Experimental modeling under PT-conditions of lithospheric mantle. Russ. Geol. Geophys. 2015, 56, 143–154. [CrossRef] 56. Boettcher, A.L.; Mysen, B.O.; Allen, J.C. Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J. Geophys. Res. 1973, 80, 5898–5901. [CrossRef] 57. Luth, R.W. Natural versus experimental control of oxidation state: Effects on the composition and speciation of C-O-H fluids. Am. Miner. 1989, 74, 50–57. 58. Berman, R.G. Thermobarometry using multiequilibrium calculations: A new technique with petrologic applications. Can. Miner. 1991, 29, 833–855. 59. Ogasawara, Y.; Liou, J.G.; Zhang, R.Y. Thermochemical calculation of logf O2-T-P stability relations of diamond-bearing assemblages in the model system CaO-MgO-SiO2-CO2-H2O. Russ. Geol. Geophys. 1997, 2, 587–598. 60. Robie, R.A.; Hemingway, B.S.; Fischer, J.R. Geological Survey Bulletin 1452; United States Government, Printing Office: Washington, DC, USA, 1978. 61. Holland, T.J.B.; Powell, L. An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2 . J. Metamorph. Geol. 1990, 8, 89–124. [CrossRef] 62. Wendlandt, R.F.; Huebner, S.J.; Harrison, W.J. The redox potential of boron nitride and implications for its use as a crucible material in experimental petrology. Am. Miner. 1982, 67, 170–174. 63. Farokhpoor, R.; Bjørkvik, B.J.A.; Lindeberg, E.; Torsæter, O. CO2 Wettability Behavior During CO2 Sequestration in Saline Aquifer-An Experimental Study on Minerals Representing Sandstone and Carbonate. Energy Procedia. 2013, 37, 5339–5351. [CrossRef] 64. Chiquet, P.; Broseta, D.; Thibeau, S. Wettability alteration of caprock minerals by carbon dioxide. Geofluids 2007, 7, 112–122. [CrossRef] 65. McCandless, T.E.; Gurney, J.J. Sodium in garnet and potassium in clinopyroxene: Criteria for classifying mantle eclogites. In Kimberlites and Related Rocks, Vol. 2. Their Mantle/Crust Setting, Diamonds and Diamond Exploration; Ross, J., Ed.; Geological Society of Australia, Special Publications: Melbourne, Australia, 1989; Volume 14, pp. 827–832. 66. Bulanova, G.P.; Walter, M.J.; Smith, C.B.; Kohn, S.C.; Armstrong, L.S.; Blundy, J.; Gobbo, L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Miner. Pet. 2010, 160, 489–510. [CrossRef] 67. Stachel, T.; Harris, J.W.; Brey, G.P.; Joswig, W. Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib. Miner. Pet. 2000, 140, 16–27. [CrossRef] 68. Walmsley, J.C.; Lang, A.R. On sub-micrometre inclusions in diamond coat: Crystallography and composition of ankerites and related rhombohedral carbonates. Miner. Mag. 1992, 56, 533–543. [CrossRef] 69. Skuzovatov, S.Y.; Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S. Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia). Russ. Geol. Geophys. 2012, 53, 1197–1208. [CrossRef] 70. Aulbach, S.; Viljoen, K.S.; Gerdes, A. Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal craton record subduction processes and mantle metasomatism, respectively. Lithos 2020, 368–369, 105588. [CrossRef] 71. Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Russ. Geol. Geophys. 2015, 56, 196–210. [CrossRef] 72. Pal’yanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Pal’yanova, G.A.; Borzdov, Y.M.; Sobolev, N.V. Diamond and graphite crystallization in COH fluid at PT parameters of the natural diamond formation. Dokl. Earth Sci. 2000, 375, 1395–1398. 73. Palyanov, Y.N.; Shatsky, V.S.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Crystallization of metamorphic diamond: An experimental modeling. Dokl. Earth Sci. 2001, 381, 935–938.