Цитирование: | 1. Friedrich, I.; Weidenhof, V. Structural Transformations of Ge2Sb2Te5 Films Studied by Electrical Resistance Measurements. J. Appl. Phys. 2000, 87, 4130-4134.
2. Matsunaga, T.; Yamada, N. Structural Investigation of GeSb2Te4: A High-Speed Phase-Change Material. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69, 1-8.
3. Lee, B. S.; Abelson, J. R. Investigation of the Optical and Electronic Properties of Ge2Sb2Te5 Phase Change Material in Its Amorphous, Cubic, and Hexagonal Phases. J. Appl. Phys. 2005, 97, 1-8.
4. Wuttig, M.; Yamada, N. Phase-Change Materials for Rewritable Data Storage. Nat. Mater. 2007, 6, 824-832.
5. Lencer, D.; Saglinga, M.; Grabowski, B.; Hicel, T.; Neugebauer, J.; Wuttig, M. A Map for Phase-Change Materials. Nat. Mater. 2008, 7, 972-977.
6. Wang, L.; Tu, L.; Wen, J. Application of Phase-Change Materials in Memory Taxonomy. Sci. Technol. Adv. Mater. 2017, 18, 406-429.
7. Wang, J.-J.; Xu, Y.-Z.; Mazzarello, R.; Wuttig, M.; Zhang, W. A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials. Materials 2017, 10, 862.
8. Tominaga, J. The Design and Application on Interfacial Phase-Change Memory. Phys. Status Solidi RRL 2019, 13, 180053.
9. Zhang, T.; Song, Z. T.; Liu, B.; Feng, G. M.; Feng, S. L. Effect of Structural Transformation on the Electrical Properties for GeSb2Te4 Thin Film. Thin Solid Films 2007, 516, 42-46.
10. Prokhorov, E.; Trapaga, G.; González-Hernández, J. Structural and Electrical Properties of GeSb2Te4 Face Centered Cubic Phase. J. Appl. Phys. 2008, 104, 1-8.
11. Siegrist, T.; Jost, P.; Volker, H.; Woda, M.; Merkelbach, P.; Schlockermann, C.; Wuttig, M. Disorder-Induced Localization in Crystalline Phase-Change Materials. Nat. Mater. 2011, 10, 202-208.
12. Breznay, N. P.; Volker, H.; Palevski, A.; Mazzarello, R.; Kapitulnik, A.; Wuttig, M. Weak Antilocalization and Disorder-Enhanced Electron Interactions in Annealed Films of the Phase-Change Compound GeSb2Te4. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 1-11.
13. Volker, H.; Jost, P.; Wuttig, M. Low-Temperature Transport in Crystalline Ge1Sb2Te4. Adv. Funct. Mater. 2015, 25, 6390-6398.
14. Zhang, W.; Thiess, A.; Zalden, P.; Zeller, R.; Dederichs, P. H.; Raty, J.-Y.; Wuttig, M.; Blügel, S.; Mazzarello, R. Role of Vacancies in Metal-Insulator Transition of Crystalline Phase-Change Materials. Nat. Mater. 2012, 11, 952-956.
15. Zhang, W.; Wuttig, M.; Mazzarello, R. Effects of Stoichiometry on the Transport Properties of Crystalline Phase-Change Materials. Sci. Rep. 2015, 5, 1-10.
16. Kim, J.; Kim, J.; Jhi, S.-H. Prediction of Topological Insulating Behavior in Crystalline Ge-Sb-Te. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 1.
17. Kim, J.; Jhi, S.-H. Emerging Topological Insulating Phase in Ge-Sb-Te Compounds. Phys. Status Solidi B 2012, 249, 1874-1879.
18. Eremeev, S. V.; Landolt, G.; Menshchikova, T. V.; Slomski, B.; Koroteev, Y. M.; Aliev, Z. S.; Babanly, M. B.; Henk, J.; Ernst, A.; Patthey, L.; Eich, A.; Khajetoorians, A. A.; Hagemeister, J.; Pietzsch, O.; Wiebe, J.; Wiesendanger, R.; Echenique, P. M.; Tsirkin, S. S.; Amiraslanov, I. R.; Dil, J. H.; Chulkov, E. V. Atom-Specific Spin Mapping and Buried Topological States in a Homologous Series of Topological Insulators. Nat. Commun. 2012, 3, 1-7.
19. Silkin, I. V.; Koroteev, Y. M.; Bihlmayer, G.; Chulkov, E. V. Influence of the Ge-Sb Sublattice Atomic Composition on the Topological Electronic Properties of Ge2Sb2Te5. Appl. Surf. Sci. 2013, 267, 169-172.
20. Kim, J.; Jhi, S.-H. Disorder-Induced Structural Transitions in Topological Insulating Ge-Sb-Te Compounds. J. Appl. Phys. 2015, 117, 1-5.
21. Pauly, C.; Liebmann, M.; Giussani, A.; Kellner, J.; Just, S.; Sánchez-Barriga, J.; Rienks, E.; Rader, O.; Calarco, R.; Bihlmayer, G.; Morgenstern, M. Evidence for Topological Band Inversion of the Phase Change Material Ge2Sb2Te5. Appl. Phys. Lett. 2013, 103, 1-4.
22. Kellner, J.; Bihlmayer, G.; Liebmann, M.; Otto, S.; Pauly, C.; Boschker, J. E.; Bragaglia, V.; Cecchi, S.; Wang, R. N.; Deringer, V. L.; Küppers, P.; Bhaskar, P.; Golias, E.; Sánchez-Barriga, J.; Dronskowski, R.; Fauster, T.; Rader, O.; Calarco, R.; Morgenstern, M. Mapping the Band Structure of GeSbTe Phase Change Alloys around the Fermi Level. Commun. Phys. 2018, 1, 1-11.
23. Lu, H.-Z.; Shen, S.-Q. Weal Localization and Weak Anti-Localization in Topological Insulator. Proc. SPIE 9167, Spintronics, 91672E; SPIE Nanoscience+Engineering, CA, 2014.
24. Gopal, R. K.; Singh, S.; Chandra, R.; Mitra, C. Weak-Antilocalization and Surface Dominated Transport in Topological Insulator Bi2Se2Te. AIP Adv. 2015, 5, 1-10.
25. Singh, B.; Lin, H.; Prasad, R.; Bansil, A. Topological Phase Transition and Two-Dimensional Topological Insulator in Ge-Based Thin Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 1-7.
26. Klein, A.; Dieker, H.; Späth, B.; Fons, P.; Kolobov, A.; Steimer, C.; Wuttig, M. Changes in Electronic Structure and Chemical Bonding Upon Crystallization of the Phase Change Material GeSb2Te4. Phys. Rev. Lett. 2008, 100, 1-4.
27. Pauly, C.; Bihlmayer, G.; Liebmann, M.; Grob, M.; Georgi, A.; Subramaniam, D.; Scholz, M. R.; Sánchez-Barriga, J.; Varykhalov, A.; Blügel, S.; Rader, O.; Morgenstern, M. Probing Two Topological Surface Bands of Sb2Te3 by Spin-Polarized Photoemission Spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 1-8.
28. Lee, C.-K.; Cheng, C.-M.; Weng, S.-C.; Chen, W.-C.; Tsuei, K.-D.; Yu, S.-H.; Chou, M. M-C.; Chang, C.-W.; Tu, L.-W.; Yang, H.-D.; Luo, C.-W.; Gospodinov, M. M. Robustness of a Topologically Protected Surface State in a Sb2Te2Se Single Crystal. Sci. Rep. 2016, 6, 1-9.
29. Kuroda, K.; Arita, M.; Miyamoto, K.; Ye, M.; Jiang, J.; Kimura, A.; Krasovskii, E. E.; Chulkov, E. V.; Iwasawa, H.; Okuda, T.; Shimada, K.; Ueda, Y.; Namatame, H.; Taniguchi, M. Hexagonally Deformed Fermi Surface of the 3D Topological Insulator Bi2Se3. Phys. Rev. Lett. 2010, 105, 1-4.
30. Okawa, M.; Ishizaka, K.; Uchiyama, H.; Tadatomo, H.; Masui, T.; Tajima, S.; Wang, X.-Y.; Chen, C.-T.; Watanabe, S.; Chainani, A.; Saitoh, T.; Shin, S. Bulk-Sensitive Laser-ARPES Study on the Cuprate Superconductor YBa2Cu3O7-δ. Phys. C 2010, 470, S62-S64.
31. Kunisada, S.; Adachi, S.; Sakai, S.; Sasaki, N.; Nakayama, M.; Akebi, S.; Kuroda, K.; Sasagawa, T.; Watanabe, T.; Shin, S.; Kondo, T. Observation of Bogoliubov Band Hybridization in the Optimally Doped Trilayer Bi2Sr2Ca2Cu3O10+δ. Phys. Rev. Lett. 2017, 119, 1-5.
32. Nurmamat, M.; Ishida, Y.; Yori, R.; Sumida, K.; Zhu, S. Y.; Nakatake, M.; Ueda, Y.; Taniguchi, M.; Shin, S.; Akahama, Y.; Kimura, A. Prolonged Photo-Carriers Generated in a Massive-and-Anisotropic Dirac Materials. Sci. Rep. 2018, 8, 1-7.
33. Chen, Z. S.; Dong, J. W.; Papalazarou, E.; Marsi, M.; Giorgetti, C.; Zhang, Z. L.; Tian, B. B.; Rueff, J.-P.; Taleb-Ibrahimi, A.; Perfett, L. Band Gap Renormalization, Carrier Multiplication, and Stark Broadening in Photoexcited Black Phosphorus. Nano Lett. 2019, 19, 488-493.
34. Shelimova, L. E.; Karpinskii, O. G.; Zemskov, V. S.; Konstantinov, P. P. Structural and Electronic Properties of Layered Tetradymite-Like Compounds in the GeTe-Bi2Te3 and GeTe-Sb2Te3 Systems. Inorg. Mater. 2000, 36, 235-242.
35. Iwasawa, H.; Shimada, K.; Schwier, E. F.; Zheng, M.; Kojima, Y.; Hayashi, H.; Jiang, J.; Higashiguchi, M.; Aiura, Y.; Namatame, H.; Taniguchi, M. Rotatable High-Resolution ARPES System for Tunable Linear-Polarization Geometry. J. Synchrotron Radiat. 2017, 24, 836-841.
36. Iwasawa, H.; Schwier, E. F.; Arita, M.; Ino, A.; Namatame, H.; Taniguchi, M.; Aiura, Y.; Shimada, K. Development of Laser-Based Scanning μ-ARPES System with Ultimate Energy and Momentum Resolutions. Ultramicroscopy 2017, 182, 85-91.
37. Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S. Time-Resolved Photoemission Apparatus Achieving Sub-20-meV Energy Resolution and High Stability. Rev. Sci. Instrum. 2014, 85, 1-9.
38. Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metal and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50.
39. Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; et al. ABINIT: First-Principles Approach to Material and Nanosystem Properties. Comput. Phys. Commun. 2009, 180, 2582-2615.
40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
41. Krack, M. Pseudopotentials for H to Kr Optimized for Gradient-Corrected Exchange-Correlation Functionals. Theor. Chem. Acc. 2005, 114, 145-152.
42. Marzari, N.; Vanderbilt, D. Maximally Localized Generalized Wannier Functions for Composite Energy Bands. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56, 12847-12865.
43. Zhang, W.; Yu, R.; Zhang, H.-J.; Dai, X.; Fang, Z. First-Principles Studies of the Three-Dimensional Strong Topological Insulators Bi2Te3, Bi2 Se3 and Sb2Te3. NJP 2010, 12, 1-14.
44. Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. J. Quick Iterative Scheme for the Calculation of Transfer Matrices: Application to MO. J. Phys. F: Met. Phys. 1984, 14, 1205-1215.
45. Lopez Sancho, M. P. M. P.; Lopez Sancho, J. M.; Rubio, J. J. Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions. J. Phys. F: Met. Phys. 1985, 15, 851-858.
46. Henk, J.; Schattke, W. A Subroutine Package for Computing Green's Functions of Relaxed Surfaces by the Renormalization Method. Comput. Phys. Commun. 1993, 77, 69-83.
|