Инд. авторы: Nurmamat M., Okamoto K., Zhu S.Y., Menshchikova T.V., Rusinov I.P., Korostelev V.O., Miyamoto K., Okuda T., Miyashita T., Wang X.X., Ishida Y., Sumida K., Schwier E.F., Ye M., Aliev Z.S., Babanly M.B., Amiraslanov I.R., Chulkov E.V., Kokh K.A., Tereshchenko O.E., Shimada K., Shin S., Kimura A.
Заглавие: Topologically Nontrivial Phase-Change Compound GeSb2Te4
Библ. ссылка: Nurmamat M., Okamoto K., Zhu S.Y., Menshchikova T.V., Rusinov I.P., Korostelev V.O., Miyamoto K., Okuda T., Miyashita T., Wang X.X., Ishida Y., Sumida K., Schwier E.F., Ye M., Aliev Z.S., Babanly M.B., Amiraslanov I.R., Chulkov E.V., Kokh K.A., Tereshchenko O.E., Shimada K., Shin S., Kimura A. Topologically Nontrivial Phase-Change Compound GeSb2Te4 // ACS Nano. - 2020. - Vol.14. - Iss. 7. - P.9059-9065. - ISSN 1936-0851 . - EISSN 1936-086X.
Внешние системы: DOI: 10.1021/acsnano.0c04145; РИНЦ: 45354846; PubMed: 32628444; WoS: 000557762800126;
Реферат: eng: Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
Ключевые слова: topologically nontrivial phase; linearly dispersive bulk band; inertia-free Dirac currents; ENERGY; ARPES SYSTEM; ELECTRICAL-PROPERTIES; pump-probe method; BULK; phase-change materials;
Издано: 2020
Физ. характеристика: с.9059-9065
Цитирование: 1. Friedrich, I.; Weidenhof, V. Structural Transformations of Ge2Sb2Te5 Films Studied by Electrical Resistance Measurements. J. Appl. Phys. 2000, 87, 4130-4134. 2. Matsunaga, T.; Yamada, N. Structural Investigation of GeSb2Te4: A High-Speed Phase-Change Material. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69, 1-8. 3. Lee, B. S.; Abelson, J. R. Investigation of the Optical and Electronic Properties of Ge2Sb2Te5 Phase Change Material in Its Amorphous, Cubic, and Hexagonal Phases. J. Appl. Phys. 2005, 97, 1-8. 4. Wuttig, M.; Yamada, N. Phase-Change Materials for Rewritable Data Storage. Nat. Mater. 2007, 6, 824-832. 5. Lencer, D.; Saglinga, M.; Grabowski, B.; Hicel, T.; Neugebauer, J.; Wuttig, M. A Map for Phase-Change Materials. Nat. Mater. 2008, 7, 972-977. 6. Wang, L.; Tu, L.; Wen, J. Application of Phase-Change Materials in Memory Taxonomy. Sci. Technol. Adv. Mater. 2017, 18, 406-429. 7. Wang, J.-J.; Xu, Y.-Z.; Mazzarello, R.; Wuttig, M.; Zhang, W. A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials. Materials 2017, 10, 862. 8. Tominaga, J. The Design and Application on Interfacial Phase-Change Memory. Phys. Status Solidi RRL 2019, 13, 180053. 9. Zhang, T.; Song, Z. T.; Liu, B.; Feng, G. M.; Feng, S. L. Effect of Structural Transformation on the Electrical Properties for GeSb2Te4 Thin Film. Thin Solid Films 2007, 516, 42-46. 10. Prokhorov, E.; Trapaga, G.; González-Hernández, J. Structural and Electrical Properties of GeSb2Te4 Face Centered Cubic Phase. J. Appl. Phys. 2008, 104, 1-8. 11. Siegrist, T.; Jost, P.; Volker, H.; Woda, M.; Merkelbach, P.; Schlockermann, C.; Wuttig, M. Disorder-Induced Localization in Crystalline Phase-Change Materials. Nat. Mater. 2011, 10, 202-208. 12. Breznay, N. P.; Volker, H.; Palevski, A.; Mazzarello, R.; Kapitulnik, A.; Wuttig, M. Weak Antilocalization and Disorder-Enhanced Electron Interactions in Annealed Films of the Phase-Change Compound GeSb2Te4. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 1-11. 13. Volker, H.; Jost, P.; Wuttig, M. Low-Temperature Transport in Crystalline Ge1Sb2Te4. Adv. Funct. Mater. 2015, 25, 6390-6398. 14. Zhang, W.; Thiess, A.; Zalden, P.; Zeller, R.; Dederichs, P. H.; Raty, J.-Y.; Wuttig, M.; Blügel, S.; Mazzarello, R. Role of Vacancies in Metal-Insulator Transition of Crystalline Phase-Change Materials. Nat. Mater. 2012, 11, 952-956. 15. Zhang, W.; Wuttig, M.; Mazzarello, R. Effects of Stoichiometry on the Transport Properties of Crystalline Phase-Change Materials. Sci. Rep. 2015, 5, 1-10. 16. Kim, J.; Kim, J.; Jhi, S.-H. Prediction of Topological Insulating Behavior in Crystalline Ge-Sb-Te. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 1. 17. Kim, J.; Jhi, S.-H. Emerging Topological Insulating Phase in Ge-Sb-Te Compounds. Phys. Status Solidi B 2012, 249, 1874-1879. 18. Eremeev, S. V.; Landolt, G.; Menshchikova, T. V.; Slomski, B.; Koroteev, Y. M.; Aliev, Z. S.; Babanly, M. B.; Henk, J.; Ernst, A.; Patthey, L.; Eich, A.; Khajetoorians, A. A.; Hagemeister, J.; Pietzsch, O.; Wiebe, J.; Wiesendanger, R.; Echenique, P. M.; Tsirkin, S. S.; Amiraslanov, I. R.; Dil, J. H.; Chulkov, E. V. Atom-Specific Spin Mapping and Buried Topological States in a Homologous Series of Topological Insulators. Nat. Commun. 2012, 3, 1-7. 19. Silkin, I. V.; Koroteev, Y. M.; Bihlmayer, G.; Chulkov, E. V. Influence of the Ge-Sb Sublattice Atomic Composition on the Topological Electronic Properties of Ge2Sb2Te5. Appl. Surf. Sci. 2013, 267, 169-172. 20. Kim, J.; Jhi, S.-H. Disorder-Induced Structural Transitions in Topological Insulating Ge-Sb-Te Compounds. J. Appl. Phys. 2015, 117, 1-5. 21. Pauly, C.; Liebmann, M.; Giussani, A.; Kellner, J.; Just, S.; Sánchez-Barriga, J.; Rienks, E.; Rader, O.; Calarco, R.; Bihlmayer, G.; Morgenstern, M. Evidence for Topological Band Inversion of the Phase Change Material Ge2Sb2Te5. Appl. Phys. Lett. 2013, 103, 1-4. 22. Kellner, J.; Bihlmayer, G.; Liebmann, M.; Otto, S.; Pauly, C.; Boschker, J. E.; Bragaglia, V.; Cecchi, S.; Wang, R. N.; Deringer, V. L.; Küppers, P.; Bhaskar, P.; Golias, E.; Sánchez-Barriga, J.; Dronskowski, R.; Fauster, T.; Rader, O.; Calarco, R.; Morgenstern, M. Mapping the Band Structure of GeSbTe Phase Change Alloys around the Fermi Level. Commun. Phys. 2018, 1, 1-11. 23. Lu, H.-Z.; Shen, S.-Q. Weal Localization and Weak Anti-Localization in Topological Insulator. Proc. SPIE 9167, Spintronics, 91672E; SPIE Nanoscience+Engineering, CA, 2014. 24. Gopal, R. K.; Singh, S.; Chandra, R.; Mitra, C. Weak-Antilocalization and Surface Dominated Transport in Topological Insulator Bi2Se2Te. AIP Adv. 2015, 5, 1-10. 25. Singh, B.; Lin, H.; Prasad, R.; Bansil, A. Topological Phase Transition and Two-Dimensional Topological Insulator in Ge-Based Thin Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 1-7. 26. Klein, A.; Dieker, H.; Späth, B.; Fons, P.; Kolobov, A.; Steimer, C.; Wuttig, M. Changes in Electronic Structure and Chemical Bonding Upon Crystallization of the Phase Change Material GeSb2Te4. Phys. Rev. Lett. 2008, 100, 1-4. 27. Pauly, C.; Bihlmayer, G.; Liebmann, M.; Grob, M.; Georgi, A.; Subramaniam, D.; Scholz, M. R.; Sánchez-Barriga, J.; Varykhalov, A.; Blügel, S.; Rader, O.; Morgenstern, M. Probing Two Topological Surface Bands of Sb2Te3 by Spin-Polarized Photoemission Spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 1-8. 28. Lee, C.-K.; Cheng, C.-M.; Weng, S.-C.; Chen, W.-C.; Tsuei, K.-D.; Yu, S.-H.; Chou, M. M-C.; Chang, C.-W.; Tu, L.-W.; Yang, H.-D.; Luo, C.-W.; Gospodinov, M. M. Robustness of a Topologically Protected Surface State in a Sb2Te2Se Single Crystal. Sci. Rep. 2016, 6, 1-9. 29. Kuroda, K.; Arita, M.; Miyamoto, K.; Ye, M.; Jiang, J.; Kimura, A.; Krasovskii, E. E.; Chulkov, E. V.; Iwasawa, H.; Okuda, T.; Shimada, K.; Ueda, Y.; Namatame, H.; Taniguchi, M. Hexagonally Deformed Fermi Surface of the 3D Topological Insulator Bi2Se3. Phys. Rev. Lett. 2010, 105, 1-4. 30. Okawa, M.; Ishizaka, K.; Uchiyama, H.; Tadatomo, H.; Masui, T.; Tajima, S.; Wang, X.-Y.; Chen, C.-T.; Watanabe, S.; Chainani, A.; Saitoh, T.; Shin, S. Bulk-Sensitive Laser-ARPES Study on the Cuprate Superconductor YBa2Cu3O7-δ. Phys. C 2010, 470, S62-S64. 31. Kunisada, S.; Adachi, S.; Sakai, S.; Sasaki, N.; Nakayama, M.; Akebi, S.; Kuroda, K.; Sasagawa, T.; Watanabe, T.; Shin, S.; Kondo, T. Observation of Bogoliubov Band Hybridization in the Optimally Doped Trilayer Bi2Sr2Ca2Cu3O10+δ. Phys. Rev. Lett. 2017, 119, 1-5. 32. Nurmamat, M.; Ishida, Y.; Yori, R.; Sumida, K.; Zhu, S. Y.; Nakatake, M.; Ueda, Y.; Taniguchi, M.; Shin, S.; Akahama, Y.; Kimura, A. Prolonged Photo-Carriers Generated in a Massive-and-Anisotropic Dirac Materials. Sci. Rep. 2018, 8, 1-7. 33. Chen, Z. S.; Dong, J. W.; Papalazarou, E.; Marsi, M.; Giorgetti, C.; Zhang, Z. L.; Tian, B. B.; Rueff, J.-P.; Taleb-Ibrahimi, A.; Perfett, L. Band Gap Renormalization, Carrier Multiplication, and Stark Broadening in Photoexcited Black Phosphorus. Nano Lett. 2019, 19, 488-493. 34. Shelimova, L. E.; Karpinskii, O. G.; Zemskov, V. S.; Konstantinov, P. P. Structural and Electronic Properties of Layered Tetradymite-Like Compounds in the GeTe-Bi2Te3 and GeTe-Sb2Te3 Systems. Inorg. Mater. 2000, 36, 235-242. 35. Iwasawa, H.; Shimada, K.; Schwier, E. F.; Zheng, M.; Kojima, Y.; Hayashi, H.; Jiang, J.; Higashiguchi, M.; Aiura, Y.; Namatame, H.; Taniguchi, M. Rotatable High-Resolution ARPES System for Tunable Linear-Polarization Geometry. J. Synchrotron Radiat. 2017, 24, 836-841. 36. Iwasawa, H.; Schwier, E. F.; Arita, M.; Ino, A.; Namatame, H.; Taniguchi, M.; Aiura, Y.; Shimada, K. Development of Laser-Based Scanning μ-ARPES System with Ultimate Energy and Momentum Resolutions. Ultramicroscopy 2017, 182, 85-91. 37. Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S. Time-Resolved Photoemission Apparatus Achieving Sub-20-meV Energy Resolution and High Stability. Rev. Sci. Instrum. 2014, 85, 1-9. 38. Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metal and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50. 39. Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; et al. ABINIT: First-Principles Approach to Material and Nanosystem Properties. Comput. Phys. Commun. 2009, 180, 2582-2615. 40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868. 41. Krack, M. Pseudopotentials for H to Kr Optimized for Gradient-Corrected Exchange-Correlation Functionals. Theor. Chem. Acc. 2005, 114, 145-152. 42. Marzari, N.; Vanderbilt, D. Maximally Localized Generalized Wannier Functions for Composite Energy Bands. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56, 12847-12865. 43. Zhang, W.; Yu, R.; Zhang, H.-J.; Dai, X.; Fang, Z. First-Principles Studies of the Three-Dimensional Strong Topological Insulators Bi2Te3, Bi2 Se3 and Sb2Te3. NJP 2010, 12, 1-14. 44. Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. J. Quick Iterative Scheme for the Calculation of Transfer Matrices: Application to MO. J. Phys. F: Met. Phys. 1984, 14, 1205-1215. 45. Lopez Sancho, M. P. M. P.; Lopez Sancho, J. M.; Rubio, J. J. Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions. J. Phys. F: Met. Phys. 1985, 15, 851-858. 46. Henk, J.; Schattke, W. A Subroutine Package for Computing Green's Functions of Relaxed Surfaces by the Renormalization Method. Comput. Phys. Commun. 1993, 77, 69-83.